floating_axes.py
12.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
"""
An experimental support for curvilinear grid.
"""
# TODO :
# see if tick_iterator method can be simplified by reusing the parent method.
import functools
import numpy as np
import matplotlib.patches as mpatches
from matplotlib.path import Path
import matplotlib.axes as maxes
from mpl_toolkits.axes_grid1.parasite_axes import host_axes_class_factory
from . import axislines, grid_helper_curvelinear
from .axis_artist import AxisArtist
from .grid_finder import ExtremeFinderSimple
class FloatingAxisArtistHelper(
grid_helper_curvelinear.FloatingAxisArtistHelper):
pass
class FixedAxisArtistHelper(grid_helper_curvelinear.FloatingAxisArtistHelper):
def __init__(self, grid_helper, side, nth_coord_ticks=None):
"""
nth_coord = along which coordinate value varies.
nth_coord = 0 -> x axis, nth_coord = 1 -> y axis
"""
value, nth_coord = grid_helper.get_data_boundary(side)
super().__init__(grid_helper, nth_coord, value, axis_direction=side)
if nth_coord_ticks is None:
nth_coord_ticks = nth_coord
self.nth_coord_ticks = nth_coord_ticks
self.value = value
self.grid_helper = grid_helper
self._side = side
def update_lim(self, axes):
self.grid_helper.update_lim(axes)
self.grid_info = self.grid_helper.grid_info
def get_tick_iterators(self, axes):
"""tick_loc, tick_angle, tick_label, (optionally) tick_label"""
grid_finder = self.grid_helper.grid_finder
lat_levs, lat_n, lat_factor = self.grid_info["lat_info"]
lon_levs, lon_n, lon_factor = self.grid_info["lon_info"]
lon_levs, lat_levs = np.asarray(lon_levs), np.asarray(lat_levs)
if lat_factor is not None:
yy0 = lat_levs / lat_factor
dy = 0.001 / lat_factor
else:
yy0 = lat_levs
dy = 0.001
if lon_factor is not None:
xx0 = lon_levs / lon_factor
dx = 0.001 / lon_factor
else:
xx0 = lon_levs
dx = 0.001
extremes = self.grid_helper._extremes
xmin, xmax = sorted(extremes[:2])
ymin, ymax = sorted(extremes[2:])
def transform_xy(x, y):
x1, y1 = grid_finder.transform_xy(x, y)
x2, y2 = axes.transData.transform(np.array([x1, y1]).T).T
return x2, y2
if self.nth_coord == 0:
mask = (ymin <= yy0) & (yy0 <= ymax)
yy0 = yy0[mask]
xx0 = np.full_like(yy0, self.value)
xx1, yy1 = transform_xy(xx0, yy0)
xx00 = xx0.astype(float, copy=True)
xx00[xx0 + dx > xmax] -= dx
xx1a, yy1a = transform_xy(xx00, yy0)
xx1b, yy1b = transform_xy(xx00 + dx, yy0)
yy00 = yy0.astype(float, copy=True)
yy00[yy0 + dy > ymax] -= dy
xx2a, yy2a = transform_xy(xx0, yy00)
xx2b, yy2b = transform_xy(xx0, yy00 + dy)
labels = self.grid_info["lat_labels"]
labels = [l for l, m in zip(labels, mask) if m]
elif self.nth_coord == 1:
mask = (xmin <= xx0) & (xx0 <= xmax)
xx0 = xx0[mask]
yy0 = np.full_like(xx0, self.value)
xx1, yy1 = transform_xy(xx0, yy0)
yy00 = yy0.astype(float, copy=True)
yy00[yy0 + dy > ymax] -= dy
xx1a, yy1a = transform_xy(xx0, yy00)
xx1b, yy1b = transform_xy(xx0, yy00 + dy)
xx00 = xx0.astype(float, copy=True)
xx00[xx0 + dx > xmax] -= dx
xx2a, yy2a = transform_xy(xx00, yy0)
xx2b, yy2b = transform_xy(xx00 + dx, yy0)
labels = self.grid_info["lon_labels"]
labels = [l for l, m in zip(labels, mask) if m]
def f1():
dd = np.arctan2(yy1b - yy1a, xx1b - xx1a) # angle normal
dd2 = np.arctan2(yy2b - yy2a, xx2b - xx2a) # angle tangent
mm = (yy1b - yy1a == 0) & (xx1b - xx1a == 0) # mask not defined dd
dd[mm] = dd2[mm] + np.pi / 2
tick_to_axes = self.get_tick_transform(axes) - axes.transAxes
for x, y, d, d2, lab in zip(xx1, yy1, dd, dd2, labels):
c2 = tick_to_axes.transform((x, y))
delta = 0.00001
if 0-delta <= c2[0] <= 1+delta and 0-delta <= c2[1] <= 1+delta:
d1, d2 = np.rad2deg([d, d2])
yield [x, y], d1, d2, lab
return f1(), iter([])
def get_line(self, axes):
self.update_lim(axes)
k, v = dict(left=("lon_lines0", 0),
right=("lon_lines0", 1),
bottom=("lat_lines0", 0),
top=("lat_lines0", 1))[self._side]
xx, yy = self.grid_info[k][v]
return Path(np.column_stack([xx, yy]))
class ExtremeFinderFixed(ExtremeFinderSimple):
# docstring inherited
def __init__(self, extremes):
"""
This subclass always returns the same bounding box.
Parameters
----------
extremes : (float, float, float, float)
The bounding box that this helper always returns.
"""
self._extremes = extremes
def __call__(self, transform_xy, x1, y1, x2, y2):
# docstring inherited
return self._extremes
class GridHelperCurveLinear(grid_helper_curvelinear.GridHelperCurveLinear):
def __init__(self, aux_trans, extremes,
grid_locator1=None,
grid_locator2=None,
tick_formatter1=None,
tick_formatter2=None):
# docstring inherited
self._extremes = extremes
extreme_finder = ExtremeFinderFixed(extremes)
super().__init__(aux_trans,
extreme_finder,
grid_locator1=grid_locator1,
grid_locator2=grid_locator2,
tick_formatter1=tick_formatter1,
tick_formatter2=tick_formatter2)
def get_data_boundary(self, side):
"""
Return v=0, nth=1.
"""
lon1, lon2, lat1, lat2 = self._extremes
return dict(left=(lon1, 0),
right=(lon2, 0),
bottom=(lat1, 1),
top=(lat2, 1))[side]
def new_fixed_axis(self, loc,
nth_coord=None,
axis_direction=None,
offset=None,
axes=None):
if axes is None:
axes = self.axes
if axis_direction is None:
axis_direction = loc
# This is not the same as the FixedAxisArtistHelper class used by
# grid_helper_curvelinear.GridHelperCurveLinear.new_fixed_axis!
_helper = FixedAxisArtistHelper(
self, loc, nth_coord_ticks=nth_coord)
axisline = AxisArtist(axes, _helper, axis_direction=axis_direction)
# Perhaps should be moved to the base class?
axisline.line.set_clip_on(True)
axisline.line.set_clip_box(axisline.axes.bbox)
return axisline
# new_floating_axis will inherit the grid_helper's extremes.
# def new_floating_axis(self, nth_coord,
# value,
# axes=None,
# axis_direction="bottom"
# ):
# axis = super(GridHelperCurveLinear,
# self).new_floating_axis(nth_coord,
# value, axes=axes,
# axis_direction=axis_direction)
# # set extreme values of the axis helper
# if nth_coord == 1:
# axis.get_helper().set_extremes(*self._extremes[:2])
# elif nth_coord == 0:
# axis.get_helper().set_extremes(*self._extremes[2:])
# return axis
def _update_grid(self, x1, y1, x2, y2):
if self.grid_info is None:
self.grid_info = dict()
grid_info = self.grid_info
grid_finder = self.grid_finder
extremes = grid_finder.extreme_finder(grid_finder.inv_transform_xy,
x1, y1, x2, y2)
lon_min, lon_max = sorted(extremes[:2])
lat_min, lat_max = sorted(extremes[2:])
lon_levs, lon_n, lon_factor = \
grid_finder.grid_locator1(lon_min, lon_max)
lat_levs, lat_n, lat_factor = \
grid_finder.grid_locator2(lat_min, lat_max)
grid_info["extremes"] = lon_min, lon_max, lat_min, lat_max # extremes
grid_info["lon_info"] = lon_levs, lon_n, lon_factor
grid_info["lat_info"] = lat_levs, lat_n, lat_factor
grid_info["lon_labels"] = grid_finder.tick_formatter1("bottom",
lon_factor,
lon_levs)
grid_info["lat_labels"] = grid_finder.tick_formatter2("bottom",
lat_factor,
lat_levs)
if lon_factor is None:
lon_values = np.asarray(lon_levs[:lon_n])
else:
lon_values = np.asarray(lon_levs[:lon_n]/lon_factor)
if lat_factor is None:
lat_values = np.asarray(lat_levs[:lat_n])
else:
lat_values = np.asarray(lat_levs[:lat_n]/lat_factor)
lon_lines, lat_lines = grid_finder._get_raw_grid_lines(
lon_values[(lon_min < lon_values) & (lon_values < lon_max)],
lat_values[(lat_min < lat_values) & (lat_values < lat_max)],
lon_min, lon_max, lat_min, lat_max)
grid_info["lon_lines"] = lon_lines
grid_info["lat_lines"] = lat_lines
lon_lines, lat_lines = grid_finder._get_raw_grid_lines(
# lon_min, lon_max, lat_min, lat_max)
extremes[:2], extremes[2:], *extremes)
grid_info["lon_lines0"] = lon_lines
grid_info["lat_lines0"] = lat_lines
def get_gridlines(self, which="major", axis="both"):
grid_lines = []
if axis in ["both", "x"]:
grid_lines.extend(self.grid_info["lon_lines"])
if axis in ["both", "y"]:
grid_lines.extend(self.grid_info["lat_lines"])
return grid_lines
def get_boundary(self):
"""
Return (N, 2) array of (x, y) coordinate of the boundary.
"""
x0, x1, y0, y1 = self._extremes
tr = self._aux_trans
xx = np.linspace(x0, x1, 100)
yy0 = np.full_like(xx, y0)
yy1 = np.full_like(xx, y1)
yy = np.linspace(y0, y1, 100)
xx0 = np.full_like(yy, x0)
xx1 = np.full_like(yy, x1)
xxx = np.concatenate([xx[:-1], xx1[:-1], xx[-1:0:-1], xx0])
yyy = np.concatenate([yy0[:-1], yy[:-1], yy1[:-1], yy[::-1]])
t = tr.transform(np.array([xxx, yyy]).transpose())
return t
class FloatingAxesBase:
def __init__(self, *args, **kwargs):
grid_helper = kwargs.get("grid_helper", None)
if grid_helper is None:
raise ValueError("FloatingAxes requires grid_helper argument")
if not hasattr(grid_helper, "get_boundary"):
raise ValueError("grid_helper must implement get_boundary method")
self._axes_class_floating.__init__(self, *args, **kwargs)
self.set_aspect(1.)
self.adjust_axes_lim()
def _gen_axes_patch(self):
# docstring inherited
grid_helper = self.get_grid_helper()
t = grid_helper.get_boundary()
return mpatches.Polygon(t)
def cla(self):
self._axes_class_floating.cla(self)
# HostAxes.cla(self)
self.patch.set_transform(self.transData)
patch = self._axes_class_floating._gen_axes_patch(self)
patch.set_figure(self.figure)
patch.set_visible(False)
patch.set_transform(self.transAxes)
self.patch.set_clip_path(patch)
self.gridlines.set_clip_path(patch)
self._original_patch = patch
def adjust_axes_lim(self):
grid_helper = self.get_grid_helper()
t = grid_helper.get_boundary()
x, y = t[:, 0], t[:, 1]
xmin, xmax = min(x), max(x)
ymin, ymax = min(y), max(y)
dx = (xmax-xmin) / 100
dy = (ymax-ymin) / 100
self.set_xlim(xmin-dx, xmax+dx)
self.set_ylim(ymin-dy, ymax+dy)
@functools.lru_cache(None)
def floatingaxes_class_factory(axes_class):
return type("Floating %s" % axes_class.__name__,
(FloatingAxesBase, axes_class),
{'_axes_class_floating': axes_class})
FloatingAxes = floatingaxes_class_factory(
host_axes_class_factory(axislines.Axes))
FloatingSubplot = maxes.subplot_class_factory(FloatingAxes)