test_transforms.py 26.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
import numpy as np
from numpy.testing import (assert_allclose, assert_almost_equal,
                           assert_array_equal, assert_array_almost_equal)
import pytest

from matplotlib import scale
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import matplotlib.transforms as mtransforms
from matplotlib.path import Path
from matplotlib.testing.decorators import image_comparison


def test_non_affine_caching():
    class AssertingNonAffineTransform(mtransforms.Transform):
        """
        This transform raises an assertion error when called when it
        shouldn't be and ``self.raise_on_transform`` is True.

        """
        input_dims = output_dims = 2
        is_affine = False

        def __init__(self, *args, **kwargs):
            mtransforms.Transform.__init__(self, *args, **kwargs)
            self.raise_on_transform = False
            self.underlying_transform = mtransforms.Affine2D().scale(10, 10)

        def transform_path_non_affine(self, path):
            assert not self.raise_on_transform, \
                'Invalidated affine part of transform unnecessarily.'
            return self.underlying_transform.transform_path(path)
        transform_path = transform_path_non_affine

        def transform_non_affine(self, path):
            assert not self.raise_on_transform, \
                'Invalidated affine part of transform unnecessarily.'
            return self.underlying_transform.transform(path)
        transform = transform_non_affine

    my_trans = AssertingNonAffineTransform()
    ax = plt.axes()
    plt.plot(np.arange(10), transform=my_trans + ax.transData)
    plt.draw()
    # enable the transform to raise an exception if it's non-affine transform
    # method is triggered again.
    my_trans.raise_on_transform = True
    ax.transAxes.invalidate()
    plt.draw()


def test_external_transform_api():
    class ScaledBy:
        def __init__(self, scale_factor):
            self._scale_factor = scale_factor

        def _as_mpl_transform(self, axes):
            return (mtransforms.Affine2D().scale(self._scale_factor)
                    + axes.transData)

    ax = plt.axes()
    line, = plt.plot(np.arange(10), transform=ScaledBy(10))
    ax.set_xlim(0, 100)
    ax.set_ylim(0, 100)
    # assert that the top transform of the line is the scale transform.
    assert_allclose(line.get_transform()._a.get_matrix(),
                    mtransforms.Affine2D().scale(10).get_matrix())


@image_comparison(['pre_transform_data'],
                  tol=0.08, remove_text=True, style='mpl20')
def test_pre_transform_plotting():
    # a catch-all for as many as possible plot layouts which handle
    # pre-transforming the data NOTE: The axis range is important in this
    # plot. It should be x10 what the data suggests it should be
    ax = plt.axes()
    times10 = mtransforms.Affine2D().scale(10)

    ax.contourf(np.arange(48).reshape(6, 8), transform=times10 + ax.transData)

    ax.pcolormesh(np.linspace(0, 4, 7),
                  np.linspace(5.5, 8, 9),
                  np.arange(48).reshape(8, 6),
                  transform=times10 + ax.transData)

    ax.scatter(np.linspace(0, 10), np.linspace(10, 0),
               transform=times10 + ax.transData)

    x = np.linspace(8, 10, 20)
    y = np.linspace(1, 5, 20)
    u = 2*np.sin(x) + np.cos(y[:, np.newaxis])
    v = np.sin(x) - np.cos(y[:, np.newaxis])

    df = 25. / 30.   # Compatibility factor for old test image
    ax.streamplot(x, y, u, v, transform=times10 + ax.transData,
                  density=(df, df), linewidth=u**2 + v**2)

    # reduce the vector data down a bit for barb and quiver plotting
    x, y = x[::3], y[::3]
    u, v = u[::3, ::3], v[::3, ::3]

    ax.quiver(x, y + 5, u, v, transform=times10 + ax.transData)

    ax.barbs(x - 3, y + 5, u**2, v**2, transform=times10 + ax.transData)


def test_contour_pre_transform_limits():
    ax = plt.axes()
    xs, ys = np.meshgrid(np.linspace(15, 20, 15), np.linspace(12.4, 12.5, 20))
    ax.contourf(xs, ys, np.log(xs * ys),
                transform=mtransforms.Affine2D().scale(0.1) + ax.transData)

    expected = np.array([[1.5, 1.24],
                         [2., 1.25]])
    assert_almost_equal(expected, ax.dataLim.get_points())


def test_pcolor_pre_transform_limits():
    # Based on test_contour_pre_transform_limits()
    ax = plt.axes()
    xs, ys = np.meshgrid(np.linspace(15, 20, 15), np.linspace(12.4, 12.5, 20))
    ax.pcolor(xs, ys, np.log(xs * ys)[:-1, :-1],
              transform=mtransforms.Affine2D().scale(0.1) + ax.transData)

    expected = np.array([[1.5, 1.24],
                         [2., 1.25]])
    assert_almost_equal(expected, ax.dataLim.get_points())


def test_pcolormesh_pre_transform_limits():
    # Based on test_contour_pre_transform_limits()
    ax = plt.axes()
    xs, ys = np.meshgrid(np.linspace(15, 20, 15), np.linspace(12.4, 12.5, 20))
    ax.pcolormesh(xs, ys, np.log(xs * ys)[:-1, :-1],
                  transform=mtransforms.Affine2D().scale(0.1) + ax.transData)

    expected = np.array([[1.5, 1.24],
                         [2., 1.25]])
    assert_almost_equal(expected, ax.dataLim.get_points())


def test_Affine2D_from_values():
    points = np.array([[0, 0],
                       [10, 20],
                       [-1, 0],
                       ])

    t = mtransforms.Affine2D.from_values(1, 0, 0, 0, 0, 0)
    actual = t.transform(points)
    expected = np.array([[0, 0], [10, 0], [-1, 0]])
    assert_almost_equal(actual, expected)

    t = mtransforms.Affine2D.from_values(0, 2, 0, 0, 0, 0)
    actual = t.transform(points)
    expected = np.array([[0, 0], [0, 20], [0, -2]])
    assert_almost_equal(actual, expected)

    t = mtransforms.Affine2D.from_values(0, 0, 3, 0, 0, 0)
    actual = t.transform(points)
    expected = np.array([[0, 0], [60, 0], [0, 0]])
    assert_almost_equal(actual, expected)

    t = mtransforms.Affine2D.from_values(0, 0, 0, 4, 0, 0)
    actual = t.transform(points)
    expected = np.array([[0, 0], [0, 80], [0, 0]])
    assert_almost_equal(actual, expected)

    t = mtransforms.Affine2D.from_values(0, 0, 0, 0, 5, 0)
    actual = t.transform(points)
    expected = np.array([[5, 0], [5, 0], [5, 0]])
    assert_almost_equal(actual, expected)

    t = mtransforms.Affine2D.from_values(0, 0, 0, 0, 0, 6)
    actual = t.transform(points)
    expected = np.array([[0, 6], [0, 6], [0, 6]])
    assert_almost_equal(actual, expected)


def test_affine_inverted_invalidated():
    # Ensure that the an affine transform is not declared valid on access
    point = [1.0, 1.0]
    t = mtransforms.Affine2D()

    assert_almost_equal(point, t.transform(t.inverted().transform(point)))
    # Change and access the transform
    t.translate(1.0, 1.0).get_matrix()
    assert_almost_equal(point, t.transform(t.inverted().transform(point)))


def test_clipping_of_log():
    # issue 804
    path = Path([(0.2, -99), (0.4, -99), (0.4, 20), (0.2, 20), (0.2, -99)],
                closed=True)
    # something like this happens in plotting logarithmic histograms
    trans = mtransforms.BlendedGenericTransform(
        mtransforms.Affine2D(), scale.LogTransform(10, 'clip'))
    tpath = trans.transform_path_non_affine(path)
    result = tpath.iter_segments(trans.get_affine(),
                                 clip=(0, 0, 100, 100),
                                 simplify=False)
    tpoints, tcodes = zip(*result)
    assert_allclose(tcodes, path.codes)


class NonAffineForTest(mtransforms.Transform):
    """
    A class which looks like a non affine transform, but does whatever
    the given transform does (even if it is affine). This is very useful
    for testing NonAffine behaviour with a simple Affine transform.

    """
    is_affine = False
    output_dims = 2
    input_dims = 2

    def __init__(self, real_trans, *args, **kwargs):
        self.real_trans = real_trans
        mtransforms.Transform.__init__(self, *args, **kwargs)

    def transform_non_affine(self, values):
        return self.real_trans.transform(values)

    def transform_path_non_affine(self, path):
        return self.real_trans.transform_path(path)


class TestBasicTransform:
    def setup_method(self):

        self.ta1 = mtransforms.Affine2D(shorthand_name='ta1').rotate(np.pi / 2)
        self.ta2 = mtransforms.Affine2D(shorthand_name='ta2').translate(10, 0)
        self.ta3 = mtransforms.Affine2D(shorthand_name='ta3').scale(1, 2)

        self.tn1 = NonAffineForTest(mtransforms.Affine2D().translate(1, 2),
                                    shorthand_name='tn1')
        self.tn2 = NonAffineForTest(mtransforms.Affine2D().translate(1, 2),
                                    shorthand_name='tn2')
        self.tn3 = NonAffineForTest(mtransforms.Affine2D().translate(1, 2),
                                    shorthand_name='tn3')

        # creates a transform stack which looks like ((A, (N, A)), A)
        self.stack1 = (self.ta1 + (self.tn1 + self.ta2)) + self.ta3
        # creates a transform stack which looks like (((A, N), A), A)
        self.stack2 = self.ta1 + self.tn1 + self.ta2 + self.ta3
        # creates a transform stack which is a subset of stack2
        self.stack2_subset = self.tn1 + self.ta2 + self.ta3

        # when in debug, the transform stacks can produce dot images:
#        self.stack1.write_graphviz(file('stack1.dot', 'w'))
#        self.stack2.write_graphviz(file('stack2.dot', 'w'))
#        self.stack2_subset.write_graphviz(file('stack2_subset.dot', 'w'))

    def test_transform_depth(self):
        assert self.stack1.depth == 4
        assert self.stack2.depth == 4
        assert self.stack2_subset.depth == 3

    def test_left_to_right_iteration(self):
        stack3 = (self.ta1 + (self.tn1 + (self.ta2 + self.tn2))) + self.ta3
#        stack3.write_graphviz(file('stack3.dot', 'w'))

        target_transforms = [stack3,
                             (self.tn1 + (self.ta2 + self.tn2)) + self.ta3,
                             (self.ta2 + self.tn2) + self.ta3,
                             self.tn2 + self.ta3,
                             self.ta3,
                             ]
        r = [rh for _, rh in stack3._iter_break_from_left_to_right()]
        assert len(r) == len(target_transforms)

        for target_stack, stack in zip(target_transforms, r):
            assert target_stack == stack

    def test_transform_shortcuts(self):
        assert self.stack1 - self.stack2_subset == self.ta1
        assert self.stack2 - self.stack2_subset == self.ta1

        assert self.stack2_subset - self.stack2 == self.ta1.inverted()
        assert (self.stack2_subset - self.stack2).depth == 1

        with pytest.raises(ValueError):
            self.stack1 - self.stack2

        aff1 = self.ta1 + (self.ta2 + self.ta3)
        aff2 = self.ta2 + self.ta3

        assert aff1 - aff2 == self.ta1
        assert aff1 - self.ta2 == aff1 + self.ta2.inverted()

        assert self.stack1 - self.ta3 == self.ta1 + (self.tn1 + self.ta2)
        assert self.stack2 - self.ta3 == self.ta1 + self.tn1 + self.ta2

        assert ((self.ta2 + self.ta3) - self.ta3 + self.ta3 ==
                self.ta2 + self.ta3)

    def test_contains_branch(self):
        r1 = (self.ta2 + self.ta1)
        r2 = (self.ta2 + self.ta1)
        assert r1 == r2
        assert r1 != self.ta1
        assert r1.contains_branch(r2)
        assert r1.contains_branch(self.ta1)
        assert not r1.contains_branch(self.ta2)
        assert not r1.contains_branch(self.ta2 + self.ta2)

        assert r1 == r2

        assert self.stack1.contains_branch(self.ta3)
        assert self.stack2.contains_branch(self.ta3)

        assert self.stack1.contains_branch(self.stack2_subset)
        assert self.stack2.contains_branch(self.stack2_subset)

        assert not self.stack2_subset.contains_branch(self.stack1)
        assert not self.stack2_subset.contains_branch(self.stack2)

        assert self.stack1.contains_branch(self.ta2 + self.ta3)
        assert self.stack2.contains_branch(self.ta2 + self.ta3)

        assert not self.stack1.contains_branch(self.tn1 + self.ta2)

    def test_affine_simplification(self):
        # tests that a transform stack only calls as much is absolutely
        # necessary "non-affine" allowing the best possible optimization with
        # complex transformation stacks.
        points = np.array([[0, 0], [10, 20], [np.nan, 1], [-1, 0]],
                          dtype=np.float64)
        na_pts = self.stack1.transform_non_affine(points)
        all_pts = self.stack1.transform(points)

        na_expected = np.array([[1., 2.], [-19., 12.],
                                [np.nan, np.nan], [1., 1.]], dtype=np.float64)
        all_expected = np.array([[11., 4.], [-9., 24.],
                                 [np.nan, np.nan], [11., 2.]],
                                dtype=np.float64)

        # check we have the expected results from doing the affine part only
        assert_array_almost_equal(na_pts, na_expected)
        # check we have the expected results from a full transformation
        assert_array_almost_equal(all_pts, all_expected)
        # check we have the expected results from doing the transformation in
        # two steps
        assert_array_almost_equal(self.stack1.transform_affine(na_pts),
                                  all_expected)
        # check that getting the affine transformation first, then fully
        # transforming using that yields the same result as before.
        assert_array_almost_equal(self.stack1.get_affine().transform(na_pts),
                                  all_expected)

        # check that the affine part of stack1 & stack2 are equivalent
        # (i.e. the optimization is working)
        expected_result = (self.ta2 + self.ta3).get_matrix()
        result = self.stack1.get_affine().get_matrix()
        assert_array_equal(expected_result, result)

        result = self.stack2.get_affine().get_matrix()
        assert_array_equal(expected_result, result)


class TestTransformPlotInterface:
    def test_line_extent_axes_coords(self):
        # a simple line in axes coordinates
        ax = plt.axes()
        ax.plot([0.1, 1.2, 0.8], [0.9, 0.5, 0.8], transform=ax.transAxes)
        assert_array_equal(ax.dataLim.get_points(),
                           np.array([[np.inf, np.inf],
                                     [-np.inf, -np.inf]]))

    def test_line_extent_data_coords(self):
        # a simple line in data coordinates
        ax = plt.axes()
        ax.plot([0.1, 1.2, 0.8], [0.9, 0.5, 0.8], transform=ax.transData)
        assert_array_equal(ax.dataLim.get_points(),
                           np.array([[0.1,  0.5], [1.2,  0.9]]))

    def test_line_extent_compound_coords1(self):
        # a simple line in data coordinates in the y component, and in axes
        # coordinates in the x
        ax = plt.axes()
        trans = mtransforms.blended_transform_factory(ax.transAxes,
                                                      ax.transData)
        ax.plot([0.1, 1.2, 0.8], [35, -5, 18], transform=trans)
        assert_array_equal(ax.dataLim.get_points(),
                           np.array([[np.inf, -5.],
                                     [-np.inf, 35.]]))

    def test_line_extent_predata_transform_coords(self):
        # a simple line in (offset + data) coordinates
        ax = plt.axes()
        trans = mtransforms.Affine2D().scale(10) + ax.transData
        ax.plot([0.1, 1.2, 0.8], [35, -5, 18], transform=trans)
        assert_array_equal(ax.dataLim.get_points(),
                           np.array([[1., -50.], [12., 350.]]))

    def test_line_extent_compound_coords2(self):
        # a simple line in (offset + data) coordinates in the y component, and
        # in axes coordinates in the x
        ax = plt.axes()
        trans = mtransforms.blended_transform_factory(
            ax.transAxes, mtransforms.Affine2D().scale(10) + ax.transData)
        ax.plot([0.1, 1.2, 0.8], [35, -5, 18], transform=trans)
        assert_array_equal(ax.dataLim.get_points(),
                           np.array([[np.inf, -50.], [-np.inf, 350.]]))

    def test_line_extents_affine(self):
        ax = plt.axes()
        offset = mtransforms.Affine2D().translate(10, 10)
        plt.plot(np.arange(10), transform=offset + ax.transData)
        expected_data_lim = np.array([[0., 0.], [9.,  9.]]) + 10
        assert_array_almost_equal(ax.dataLim.get_points(), expected_data_lim)

    def test_line_extents_non_affine(self):
        ax = plt.axes()
        offset = mtransforms.Affine2D().translate(10, 10)
        na_offset = NonAffineForTest(mtransforms.Affine2D().translate(10, 10))
        plt.plot(np.arange(10), transform=offset + na_offset + ax.transData)
        expected_data_lim = np.array([[0., 0.], [9.,  9.]]) + 20
        assert_array_almost_equal(ax.dataLim.get_points(), expected_data_lim)

    def test_pathc_extents_non_affine(self):
        ax = plt.axes()
        offset = mtransforms.Affine2D().translate(10, 10)
        na_offset = NonAffineForTest(mtransforms.Affine2D().translate(10, 10))
        pth = Path(np.array([[0, 0], [0, 10], [10, 10], [10, 0]]))
        patch = mpatches.PathPatch(pth,
                                   transform=offset + na_offset + ax.transData)
        ax.add_patch(patch)
        expected_data_lim = np.array([[0., 0.], [10.,  10.]]) + 20
        assert_array_almost_equal(ax.dataLim.get_points(), expected_data_lim)

    def test_pathc_extents_affine(self):
        ax = plt.axes()
        offset = mtransforms.Affine2D().translate(10, 10)
        pth = Path(np.array([[0, 0], [0, 10], [10, 10], [10, 0]]))
        patch = mpatches.PathPatch(pth, transform=offset + ax.transData)
        ax.add_patch(patch)
        expected_data_lim = np.array([[0., 0.], [10.,  10.]]) + 10
        assert_array_almost_equal(ax.dataLim.get_points(), expected_data_lim)

    def test_line_extents_for_non_affine_transData(self):
        ax = plt.axes(projection='polar')
        # add 10 to the radius of the data
        offset = mtransforms.Affine2D().translate(0, 10)

        plt.plot(np.arange(10), transform=offset + ax.transData)
        # the data lim of a polar plot is stored in coordinates
        # before a transData transformation, hence the data limits
        # are not what is being shown on the actual plot.
        expected_data_lim = np.array([[0., 0.], [9.,  9.]]) + [0, 10]
        assert_array_almost_equal(ax.dataLim.get_points(), expected_data_lim)


def assert_bbox_eq(bbox1, bbox2):
    assert_array_equal(bbox1.bounds, bbox2.bounds)


def test_bbox_intersection():
    bbox_from_ext = mtransforms.Bbox.from_extents
    inter = mtransforms.Bbox.intersection

    r1 = bbox_from_ext(0, 0, 1, 1)
    r2 = bbox_from_ext(0.5, 0.5, 1.5, 1.5)
    r3 = bbox_from_ext(0.5, 0, 0.75, 0.75)
    r4 = bbox_from_ext(0.5, 1.5, 1, 2.5)
    r5 = bbox_from_ext(1, 1, 2, 2)

    # self intersection -> no change
    assert_bbox_eq(inter(r1, r1), r1)
    # simple intersection
    assert_bbox_eq(inter(r1, r2), bbox_from_ext(0.5, 0.5, 1, 1))
    # r3 contains r2
    assert_bbox_eq(inter(r1, r3), r3)
    # no intersection
    assert inter(r1, r4) is None
    # single point
    assert_bbox_eq(inter(r1, r5), bbox_from_ext(1, 1, 1, 1))


def test_bbox_as_strings():
    b = mtransforms.Bbox([[.5, 0], [.75, .75]])
    assert_bbox_eq(b, eval(repr(b), {'Bbox': mtransforms.Bbox}))
    asdict = eval(str(b), {'Bbox': dict})
    for k, v in asdict.items():
        assert getattr(b, k) == v
    fmt = '.1f'
    asdict = eval(format(b, fmt), {'Bbox': dict})
    for k, v in asdict.items():
        assert eval(format(getattr(b, k), fmt)) == v


def test_str_transform():
    # The str here should not be considered as "absolutely stable", and may be
    # reformatted later; this is just a smoketest for __str__.
    assert str(plt.subplot(projection="polar").transData) == """\
CompositeGenericTransform(
    CompositeGenericTransform(
        CompositeGenericTransform(
            TransformWrapper(
                BlendedAffine2D(
                    IdentityTransform(),
                    IdentityTransform())),
            CompositeAffine2D(
                Affine2D(
                    [[1. 0. 0.]
                     [0. 1. 0.]
                     [0. 0. 1.]]),
                Affine2D(
                    [[1. 0. 0.]
                     [0. 1. 0.]
                     [0. 0. 1.]]))),
        PolarTransform(
            PolarAxesSubplot(0.125,0.1;0.775x0.8),
            use_rmin=True,
            _apply_theta_transforms=False)),
    CompositeGenericTransform(
        CompositeGenericTransform(
            PolarAffine(
                TransformWrapper(
                    BlendedAffine2D(
                        IdentityTransform(),
                        IdentityTransform())),
                LockableBbox(
                    Bbox(x0=0.0, y0=0.0, x1=6.283185307179586, y1=1.0),
                    [[-- --]
                     [-- --]])),
            BboxTransformFrom(
                _WedgeBbox(
                    (0.5, 0.5),
                    TransformedBbox(
                        Bbox(x0=0.0, y0=0.0, x1=6.283185307179586, y1=1.0),
                        CompositeAffine2D(
                            Affine2D(
                                [[1. 0. 0.]
                                 [0. 1. 0.]
                                 [0. 0. 1.]]),
                            Affine2D(
                                [[1. 0. 0.]
                                 [0. 1. 0.]
                                 [0. 0. 1.]]))),
                    LockableBbox(
                        Bbox(x0=0.0, y0=0.0, x1=6.283185307179586, y1=1.0),
                        [[-- --]
                         [-- --]])))),
        BboxTransformTo(
            TransformedBbox(
                Bbox(x0=0.125, y0=0.09999999999999998, x1=0.9, y1=0.9),
                BboxTransformTo(
                    TransformedBbox(
                        Bbox(x0=0.0, y0=0.0, x1=8.0, y1=6.0),
                        Affine2D(
                            [[80.  0.  0.]
                             [ 0. 80.  0.]
                             [ 0.  0.  1.]])))))))"""


def test_transform_single_point():
    t = mtransforms.Affine2D()
    r = t.transform_affine((1, 1))
    assert r.shape == (2,)


def test_log_transform():
    # Tests that the last line runs without exception (previously the
    # transform would fail if one of the axes was logarithmic).
    fig, ax = plt.subplots()
    ax.set_yscale('log')
    ax.transData.transform((1, 1))


def test_nan_overlap():
    a = mtransforms.Bbox([[0, 0], [1, 1]])
    b = mtransforms.Bbox([[0, 0], [1, np.nan]])
    assert not a.overlaps(b)


def test_transform_angles():
    t = mtransforms.Affine2D()  # Identity transform
    angles = np.array([20, 45, 60])
    points = np.array([[0, 0], [1, 1], [2, 2]])

    # Identity transform does not change angles
    new_angles = t.transform_angles(angles, points)
    assert_array_almost_equal(angles, new_angles)

    # points missing a 2nd dimension
    with pytest.raises(ValueError):
        t.transform_angles(angles, points[0:2, 0:1])

    # Number of angles != Number of points
    with pytest.raises(ValueError):
        t.transform_angles(angles, points[0:2, :])


def test_nonsingular():
    # test for zero-expansion type cases; other cases may be added later
    zero_expansion = np.array([-0.001, 0.001])
    cases = [(0, np.nan), (0, 0), (0, 7.9e-317)]
    for args in cases:
        out = np.array(mtransforms.nonsingular(*args))
        assert_array_equal(out, zero_expansion)


def test_invalid_arguments():
    t = mtransforms.Affine2D()
    # There are two different exceptions, since the wrong number of
    # dimensions is caught when constructing an array_view, and that
    # raises a ValueError, and a wrong shape with a possible number
    # of dimensions is caught by our CALL_CPP macro, which always
    # raises the less precise RuntimeError.
    with pytest.raises(ValueError):
        t.transform(1)
    with pytest.raises(ValueError):
        t.transform([[[1]]])
    with pytest.raises(RuntimeError):
        t.transform([])
    with pytest.raises(RuntimeError):
        t.transform([1])
    with pytest.raises(RuntimeError):
        t.transform([[1]])
    with pytest.raises(RuntimeError):
        t.transform([[1, 2, 3]])


def test_transformed_path():
    points = [(0, 0), (1, 0), (1, 1), (0, 1)]
    path = Path(points, closed=True)

    trans = mtransforms.Affine2D()
    trans_path = mtransforms.TransformedPath(path, trans)
    assert_allclose(trans_path.get_fully_transformed_path().vertices, points)

    # Changing the transform should change the result.
    r2 = 1 / np.sqrt(2)
    trans.rotate(np.pi / 4)
    assert_allclose(trans_path.get_fully_transformed_path().vertices,
                    [(0, 0), (r2, r2), (0, 2 * r2), (-r2, r2)],
                    atol=1e-15)

    # Changing the path does not change the result (it's cached).
    path.points = [(0, 0)] * 4
    assert_allclose(trans_path.get_fully_transformed_path().vertices,
                    [(0, 0), (r2, r2), (0, 2 * r2), (-r2, r2)],
                    atol=1e-15)


def test_transformed_patch_path():
    trans = mtransforms.Affine2D()
    patch = mpatches.Wedge((0, 0), 1, 45, 135, transform=trans)

    tpatch = mtransforms.TransformedPatchPath(patch)
    points = tpatch.get_fully_transformed_path().vertices

    # Changing the transform should change the result.
    trans.scale(2)
    assert_allclose(tpatch.get_fully_transformed_path().vertices, points * 2)

    # Changing the path should change the result (and cancel out the scaling
    # from the transform).
    patch.set_radius(0.5)
    assert_allclose(tpatch.get_fully_transformed_path().vertices, points)


@pytest.mark.parametrize('locked_element', ['x0', 'y0', 'x1', 'y1'])
def test_lockable_bbox(locked_element):
    other_elements = ['x0', 'y0', 'x1', 'y1']
    other_elements.remove(locked_element)

    orig = mtransforms.Bbox.unit()
    locked = mtransforms.LockableBbox(orig, **{locked_element: 2})

    # LockableBbox should keep its locked element as specified in __init__.
    assert getattr(locked, locked_element) == 2
    assert getattr(locked, 'locked_' + locked_element) == 2
    for elem in other_elements:
        assert getattr(locked, elem) == getattr(orig, elem)

    # Changing underlying Bbox should update everything but locked element.
    orig.set_points(orig.get_points() + 10)
    assert getattr(locked, locked_element) == 2
    assert getattr(locked, 'locked_' + locked_element) == 2
    for elem in other_elements:
        assert getattr(locked, elem) == getattr(orig, elem)

    # Unlocking element should revert values back to the underlying Bbox.
    setattr(locked, 'locked_' + locked_element, None)
    assert getattr(locked, 'locked_' + locked_element) is None
    assert np.all(orig.get_points() == locked.get_points())

    # Relocking an element should change its value, but not others.
    setattr(locked, 'locked_' + locked_element, 3)
    assert getattr(locked, locked_element) == 3
    assert getattr(locked, 'locked_' + locked_element) == 3
    for elem in other_elements:
        assert getattr(locked, elem) == getattr(orig, elem)