test_polar.py
11.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import platform
import numpy as np
from numpy.testing import assert_allclose
import pytest
import matplotlib as mpl
from matplotlib import pyplot as plt
from matplotlib.testing.decorators import image_comparison, check_figures_equal
@image_comparison(['polar_axes'], style='default',
tol=0 if platform.machine() == 'x86_64' else 0.01)
def test_polar_annotations():
# You can specify the xypoint and the xytext in different positions and
# coordinate systems, and optionally turn on a connecting line and mark the
# point with a marker. Annotations work on polar axes too. In the example
# below, the xy point is in native coordinates (xycoords defaults to
# 'data'). For a polar axes, this is in (theta, radius) space. The text
# in this example is placed in the fractional figure coordinate system.
# Text keyword args like horizontal and vertical alignment are respected.
# Setup some data
r = np.arange(0.0, 1.0, 0.001)
theta = 2.0 * 2.0 * np.pi * r
fig = plt.figure()
ax = fig.add_subplot(111, polar=True)
line, = ax.plot(theta, r, color='#ee8d18', lw=3)
line, = ax.plot((0, 0), (0, 1), color="#0000ff", lw=1)
ind = 800
thisr, thistheta = r[ind], theta[ind]
ax.plot([thistheta], [thisr], 'o')
ax.annotate('a polar annotation',
xy=(thistheta, thisr), # theta, radius
xytext=(0.05, 0.05), # fraction, fraction
textcoords='figure fraction',
arrowprops=dict(facecolor='black', shrink=0.05),
horizontalalignment='left',
verticalalignment='baseline',
)
ax.tick_params(axis='x', tick1On=True, tick2On=True, direction='out')
@image_comparison(['polar_coords'], style='default', remove_text=True)
def test_polar_coord_annotations():
# You can also use polar notation on a cartesian axes. Here the native
# coordinate system ('data') is cartesian, so you need to specify the
# xycoords and textcoords as 'polar' if you want to use (theta, radius).
el = mpl.patches.Ellipse((0, 0), 10, 20, facecolor='r', alpha=0.5)
fig = plt.figure()
ax = fig.add_subplot(111, aspect='equal')
ax.add_artist(el)
el.set_clip_box(ax.bbox)
ax.annotate('the top',
xy=(np.pi/2., 10.), # theta, radius
xytext=(np.pi/3, 20.), # theta, radius
xycoords='polar',
textcoords='polar',
arrowprops=dict(facecolor='black', shrink=0.05),
horizontalalignment='left',
verticalalignment='baseline',
clip_on=True, # clip to the axes bounding box
)
ax.set_xlim(-20, 20)
ax.set_ylim(-20, 20)
@image_comparison(['polar_alignment.png'])
def test_polar_alignment():
# Test changing the vertical/horizontal alignment of a polar graph.
angles = np.arange(0, 360, 90)
grid_values = [0, 0.2, 0.4, 0.6, 0.8, 1]
fig = plt.figure()
rect = [0.1, 0.1, 0.8, 0.8]
horizontal = fig.add_axes(rect, polar=True, label='horizontal')
horizontal.set_thetagrids(angles)
vertical = fig.add_axes(rect, polar=True, label='vertical')
vertical.patch.set_visible(False)
for i in range(2):
fig.axes[i].set_rgrids(
grid_values, angle=angles[i],
horizontalalignment='left', verticalalignment='top')
def test_polar_twice():
fig = plt.figure()
plt.polar([1, 2], [.1, .2])
plt.polar([3, 4], [.3, .4])
assert len(fig.axes) == 1, 'More than one polar axes created.'
@check_figures_equal()
def test_polar_wrap(fig_test, fig_ref):
ax = fig_test.add_subplot(projection="polar")
ax.plot(np.deg2rad([179, -179]), [0.2, 0.1])
ax.plot(np.deg2rad([2, -2]), [0.2, 0.1])
ax = fig_ref.add_subplot(projection="polar")
ax.plot(np.deg2rad([179, 181]), [0.2, 0.1])
ax.plot(np.deg2rad([2, 358]), [0.2, 0.1])
@check_figures_equal()
def test_polar_units_1(fig_test, fig_ref):
import matplotlib.testing.jpl_units as units
units.register()
xs = [30.0, 45.0, 60.0, 90.0]
ys = [1.0, 2.0, 3.0, 4.0]
plt.figure(fig_test.number)
plt.polar([x * units.deg for x in xs], ys)
ax = fig_ref.add_subplot(projection="polar")
ax.plot(np.deg2rad(xs), ys)
ax.set(xlabel="deg")
@check_figures_equal()
def test_polar_units_2(fig_test, fig_ref):
import matplotlib.testing.jpl_units as units
units.register()
xs = [30.0, 45.0, 60.0, 90.0]
xs_deg = [x * units.deg for x in xs]
ys = [1.0, 2.0, 3.0, 4.0]
ys_km = [y * units.km for y in ys]
plt.figure(fig_test.number)
# test {theta,r}units.
plt.polar(xs_deg, ys_km, thetaunits="rad", runits="km")
assert isinstance(plt.gca().get_xaxis().get_major_formatter(),
units.UnitDblFormatter)
ax = fig_ref.add_subplot(projection="polar")
ax.plot(np.deg2rad(xs), ys)
ax.xaxis.set_major_formatter(mpl.ticker.FuncFormatter("{:.12}".format))
ax.set(xlabel="rad", ylabel="km")
@image_comparison(['polar_rmin'], style='default')
def test_polar_rmin():
r = np.arange(0, 3.0, 0.01)
theta = 2*np.pi*r
fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], polar=True)
ax.plot(theta, r)
ax.set_rmax(2.0)
ax.set_rmin(0.5)
@image_comparison(['polar_negative_rmin'], style='default')
def test_polar_negative_rmin():
r = np.arange(-3.0, 0.0, 0.01)
theta = 2*np.pi*r
fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], polar=True)
ax.plot(theta, r)
ax.set_rmax(0.0)
ax.set_rmin(-3.0)
@image_comparison(['polar_rorigin'], style='default')
def test_polar_rorigin():
r = np.arange(0, 3.0, 0.01)
theta = 2*np.pi*r
fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], polar=True)
ax.plot(theta, r)
ax.set_rmax(2.0)
ax.set_rmin(0.5)
ax.set_rorigin(0.0)
@image_comparison(['polar_invertedylim.png'], style='default')
def test_polar_invertedylim():
fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], polar=True)
ax.set_ylim(2, 0)
@image_comparison(['polar_invertedylim_rorigin.png'], style='default')
def test_polar_invertedylim_rorigin():
fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], polar=True)
ax.yaxis.set_inverted(True)
# Set the rlims to inverted (2, 0) without calling set_rlim, to check that
# viewlims are correctly unstaled before draw()ing.
ax.plot([0, 0], [0, 2], c="none")
ax.margins(0)
ax.set_rorigin(3)
@image_comparison(['polar_theta_position'], style='default')
def test_polar_theta_position():
r = np.arange(0, 3.0, 0.01)
theta = 2*np.pi*r
fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], polar=True)
ax.plot(theta, r)
ax.set_theta_zero_location("NW", 30)
ax.set_theta_direction('clockwise')
@image_comparison(['polar_rlabel_position'], style='default')
def test_polar_rlabel_position():
fig = plt.figure()
ax = fig.add_subplot(111, projection='polar')
ax.set_rlabel_position(315)
ax.tick_params(rotation='auto')
@image_comparison(['polar_theta_wedge'], style='default')
def test_polar_theta_limits():
r = np.arange(0, 3.0, 0.01)
theta = 2*np.pi*r
theta_mins = np.arange(15.0, 361.0, 90.0)
theta_maxs = np.arange(50.0, 361.0, 90.0)
DIRECTIONS = ('out', 'in', 'inout')
fig, axs = plt.subplots(len(theta_mins), len(theta_maxs),
subplot_kw={'polar': True},
figsize=(8, 6))
for i, start in enumerate(theta_mins):
for j, end in enumerate(theta_maxs):
ax = axs[i, j]
ax.plot(theta, r)
if start < end:
ax.set_thetamin(start)
ax.set_thetamax(end)
else:
# Plot with clockwise orientation instead.
ax.set_thetamin(end)
ax.set_thetamax(start)
ax.set_theta_direction('clockwise')
ax.tick_params(tick1On=True, tick2On=True,
direction=DIRECTIONS[i % len(DIRECTIONS)],
rotation='auto')
ax.yaxis.set_tick_params(label2On=True, rotation='auto')
@check_figures_equal(extensions=["png"])
def test_polar_rlim(fig_test, fig_ref):
ax = fig_test.subplots(subplot_kw={'polar': True})
ax.set_rlim(top=10)
ax.set_rlim(bottom=.5)
ax = fig_ref.subplots(subplot_kw={'polar': True})
ax.set_rmax(10.)
ax.set_rmin(.5)
@check_figures_equal(extensions=["png"])
def test_polar_rlim_bottom(fig_test, fig_ref):
ax = fig_test.subplots(subplot_kw={'polar': True})
ax.set_rlim(bottom=[.5, 10])
ax = fig_ref.subplots(subplot_kw={'polar': True})
ax.set_rmax(10.)
ax.set_rmin(.5)
def test_polar_rlim_zero():
ax = plt.figure().add_subplot(projection='polar')
ax.plot(np.arange(10), np.arange(10) + .01)
assert ax.get_ylim()[0] == 0
def test_polar_no_data():
plt.subplot(projection="polar")
ax = plt.gca()
assert ax.get_rmin() == 0 and ax.get_rmax() == 1
plt.close("all")
# Used to behave differently (by triggering an autoscale with no data).
plt.polar()
ax = plt.gca()
assert ax.get_rmin() == 0 and ax.get_rmax() == 1
def test_polar_not_datalim_adjustable():
ax = plt.figure().add_subplot(projection="polar")
with pytest.raises(ValueError):
ax.set_adjustable("datalim")
def test_polar_gridlines():
fig = plt.figure()
ax = fig.add_subplot(111, polar=True)
# make all major grid lines lighter, only x grid lines set in 2.1.0
ax.grid(alpha=0.2)
# hide y tick labels, no effect in 2.1.0
plt.setp(ax.yaxis.get_ticklabels(), visible=False)
fig.canvas.draw()
assert ax.xaxis.majorTicks[0].gridline.get_alpha() == .2
assert ax.yaxis.majorTicks[0].gridline.get_alpha() == .2
def test_get_tightbbox_polar():
fig, ax = plt.subplots(subplot_kw={'projection': 'polar'})
fig.canvas.draw()
bb = ax.get_tightbbox(fig.canvas.get_renderer())
assert_allclose(
bb.extents, [107.7778, 29.2778, 539.7847, 450.7222], rtol=1e-03)
@check_figures_equal(extensions=["png"])
def test_polar_interpolation_steps_constant_r(fig_test, fig_ref):
# Check that an extra half-turn doesn't make any difference -- modulo
# antialiasing, which we disable here.
p1 = (fig_test.add_subplot(121, projection="polar")
.bar([0], [1], 3*np.pi, edgecolor="none"))
p2 = (fig_test.add_subplot(122, projection="polar")
.bar([0], [1], -3*np.pi, edgecolor="none"))
p3 = (fig_ref.add_subplot(121, projection="polar")
.bar([0], [1], 2*np.pi, edgecolor="none"))
p4 = (fig_ref.add_subplot(122, projection="polar")
.bar([0], [1], -2*np.pi, edgecolor="none"))
for p in [p1, p2, p3, p4]:
plt.setp(p, antialiased=False)
@check_figures_equal(extensions=["png"])
def test_polar_interpolation_steps_variable_r(fig_test, fig_ref):
l, = fig_test.add_subplot(projection="polar").plot([0, np.pi/2], [1, 2])
l.get_path()._interpolation_steps = 100
fig_ref.add_subplot(projection="polar").plot(
np.linspace(0, np.pi/2, 101), np.linspace(1, 2, 101))
def test_thetalim_valid_invalid():
ax = plt.subplot(projection='polar')
ax.set_thetalim(0, 2 * np.pi) # doesn't raise.
ax.set_thetalim(thetamin=800, thetamax=440) # doesn't raise.
with pytest.raises(ValueError, match='The angle range must be <= 2 pi'):
ax.set_thetalim(0, 3 * np.pi)
with pytest.raises(ValueError,
match='The angle range must be <= 360 degrees'):
ax.set_thetalim(thetamin=800, thetamax=400)