dates.py
65.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
"""
Matplotlib provides sophisticated date plotting capabilities, standing on the
shoulders of python :mod:`datetime` and the add-on module :mod:`dateutil`.
.. _date-format:
Matplotlib date format
----------------------
Matplotlib represents dates using floating point numbers specifying the number
of days since a default epoch of 1970-01-01 UTC; for example,
1970-01-01, 06:00 is the floating point number 0.25. The formatters and
locators require the use of `datetime.datetime` objects, so only dates between
year 0001 and 9999 can be represented. Microsecond precision
is achievable for (approximately) 70 years on either side of the epoch, and
20 microseconds for the rest of the allowable range of dates (year 0001 to
9999). The epoch can be changed at import time via `.dates.set_epoch` or
:rc:`dates.epoch` to other dates if necessary; see
:doc:`/gallery/ticks_and_spines/date_precision_and_epochs` for a discussion.
.. note::
Before Matplotlib 3.3, the epoch was 0000-12-31 which lost modern
microsecond precision and also made the default axis limit of 0 an invalid
datetime. In 3.3 the epoch was changed as above. To convert old
ordinal floats to the new epoch, users can do::
new_ordinal = old_ordinal + mdates.date2num(np.datetime64('0000-12-31'))
There are a number of helper functions to convert between :mod:`datetime`
objects and Matplotlib dates:
.. currentmodule:: matplotlib.dates
.. autosummary::
:nosignatures:
datestr2num
date2num
num2date
num2timedelta
drange
set_epoch
get_epoch
.. note::
Like Python's `datetime.datetime`, Matplotlib uses the Gregorian calendar
for all conversions between dates and floating point numbers. This practice
is not universal, and calendar differences can cause confusing
differences between what Python and Matplotlib give as the number of days
since 0001-01-01 and what other software and databases yield. For
example, the US Naval Observatory uses a calendar that switches
from Julian to Gregorian in October, 1582. Hence, using their
calculator, the number of days between 0001-01-01 and 2006-04-01 is
732403, whereas using the Gregorian calendar via the datetime
module we find::
In [1]: date(2006, 4, 1).toordinal() - date(1, 1, 1).toordinal()
Out[1]: 732401
All the Matplotlib date converters, tickers and formatters are timezone aware.
If no explicit timezone is provided, :rc:`timezone` is assumed. If you want to
use a custom time zone, pass a `datetime.tzinfo` instance with the tz keyword
argument to `num2date`, `~.Axes.plot_date`, and any custom date tickers or
locators you create.
A wide range of specific and general purpose date tick locators and
formatters are provided in this module. See
:mod:`matplotlib.ticker` for general information on tick locators
and formatters. These are described below.
The dateutil_ module provides additional code to handle date ticking, making it
easy to place ticks on any kinds of dates. See examples below.
.. _dateutil: https://dateutil.readthedocs.io
Date tickers
------------
Most of the date tickers can locate single or multiple values. For example::
# import constants for the days of the week
from matplotlib.dates import MO, TU, WE, TH, FR, SA, SU
# tick on mondays every week
loc = WeekdayLocator(byweekday=MO, tz=tz)
# tick on mondays and saturdays
loc = WeekdayLocator(byweekday=(MO, SA))
In addition, most of the constructors take an interval argument::
# tick on mondays every second week
loc = WeekdayLocator(byweekday=MO, interval=2)
The rrule locator allows completely general date ticking::
# tick every 5th easter
rule = rrulewrapper(YEARLY, byeaster=1, interval=5)
loc = RRuleLocator(rule)
The available date tickers are:
* `MicrosecondLocator`: Locate microseconds.
* `SecondLocator`: Locate seconds.
* `MinuteLocator`: Locate minutes.
* `HourLocator`: Locate hours.
* `DayLocator`: Locate specified days of the month.
* `WeekdayLocator`: Locate days of the week, e.g., MO, TU.
* `MonthLocator`: Locate months, e.g., 7 for July.
* `YearLocator`: Locate years that are multiples of base.
* `RRuleLocator`: Locate using a `matplotlib.dates.rrulewrapper`.
`.rrulewrapper` is a simple wrapper around dateutil_'s `dateutil.rrule` which
allow almost arbitrary date tick specifications. See :doc:`rrule example
</gallery/ticks_and_spines/date_demo_rrule>`.
* `AutoDateLocator`: On autoscale, this class picks the best `DateLocator`
(e.g., `RRuleLocator`) to set the view limits and the tick locations. If
called with ``interval_multiples=True`` it will make ticks line up with
sensible multiples of the tick intervals. E.g. if the interval is 4 hours,
it will pick hours 0, 4, 8, etc as ticks. This behaviour is not guaranteed
by default.
Date formatters
---------------
The available date formatters are:
* `AutoDateFormatter`: attempts to figure out the best format to use. This is
most useful when used with the `AutoDateLocator`.
* `ConciseDateFormatter`: also attempts to figure out the best format to use,
and to make the format as compact as possible while still having complete
date information. This is most useful when used with the `AutoDateLocator`.
* `DateFormatter`: use `~datetime.datetime.strftime` format strings.
* `IndexDateFormatter`: date plots with implicit *x* indexing.
"""
import datetime
import functools
import logging
import math
import re
from dateutil.rrule import (rrule, MO, TU, WE, TH, FR, SA, SU, YEARLY,
MONTHLY, WEEKLY, DAILY, HOURLY, MINUTELY,
SECONDLY)
from dateutil.relativedelta import relativedelta
import dateutil.parser
import dateutil.tz
import numpy as np
import matplotlib
import matplotlib.units as units
import matplotlib.cbook as cbook
import matplotlib.ticker as ticker
__all__ = ('datestr2num', 'date2num', 'num2date', 'num2timedelta', 'drange',
'epoch2num', 'num2epoch', 'mx2num', 'set_epoch',
'get_epoch', 'DateFormatter',
'ConciseDateFormatter', 'IndexDateFormatter', 'AutoDateFormatter',
'DateLocator', 'RRuleLocator', 'AutoDateLocator', 'YearLocator',
'MonthLocator', 'WeekdayLocator',
'DayLocator', 'HourLocator', 'MinuteLocator',
'SecondLocator', 'MicrosecondLocator',
'rrule', 'MO', 'TU', 'WE', 'TH', 'FR', 'SA', 'SU',
'YEARLY', 'MONTHLY', 'WEEKLY', 'DAILY',
'HOURLY', 'MINUTELY', 'SECONDLY', 'MICROSECONDLY', 'relativedelta',
'DateConverter', 'ConciseDateConverter')
_log = logging.getLogger(__name__)
UTC = datetime.timezone.utc
def _get_rc_timezone():
"""Retrieve the preferred timezone from the rcParams dictionary."""
s = matplotlib.rcParams['timezone']
if s == 'UTC':
return UTC
return dateutil.tz.gettz(s)
"""
Time-related constants.
"""
EPOCH_OFFSET = float(datetime.datetime(1970, 1, 1).toordinal())
# EPOCH_OFFSET is not used by matplotlib
JULIAN_OFFSET = 1721424.5 # Julian date at 0000-12-31
# note that the Julian day epoch is achievable w/
# np.datetime64('-4713-11-24T12:00:00'); datetime64 is proleptic
# Gregorian and BC has a one-year offset. So
# np.datetime64('0000-12-31') - np.datetime64('-4713-11-24T12:00') = 1721424.5
# Ref: https://en.wikipedia.org/wiki/Julian_day
MICROSECONDLY = SECONDLY + 1
HOURS_PER_DAY = 24.
MIN_PER_HOUR = 60.
SEC_PER_MIN = 60.
MONTHS_PER_YEAR = 12.
DAYS_PER_WEEK = 7.
DAYS_PER_MONTH = 30.
DAYS_PER_YEAR = 365.0
MINUTES_PER_DAY = MIN_PER_HOUR * HOURS_PER_DAY
SEC_PER_HOUR = SEC_PER_MIN * MIN_PER_HOUR
SEC_PER_DAY = SEC_PER_HOUR * HOURS_PER_DAY
SEC_PER_WEEK = SEC_PER_DAY * DAYS_PER_WEEK
MUSECONDS_PER_DAY = 1e6 * SEC_PER_DAY
MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY = (
MO, TU, WE, TH, FR, SA, SU)
WEEKDAYS = (MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY)
# default epoch: passed to np.datetime64...
_epoch = None
def _reset_epoch_test_example():
"""
Reset the Matplotlib date epoch so it can be set again.
Only for use in tests and examples.
"""
global _epoch
_epoch = None
def set_epoch(epoch):
"""
Set the epoch (origin for dates) for datetime calculations.
The default epoch is :rc:`dates.epoch` (by default 1970-01-01T00:00).
If microsecond accuracy is desired, the date being plotted needs to be
within approximately 70 years of the epoch. Matplotlib internally
represents dates as days since the epoch, so floating point dynamic
range needs to be within a factor fo 2^52.
`~.dates.set_epoch` must be called before any dates are converted
(i.e. near the import section) or a RuntimeError will be raised.
See also :doc:`/gallery/ticks_and_spines/date_precision_and_epochs`.
Parameters
----------
epoch : str
valid UTC date parsable by `numpy.datetime64` (do not include
timezone).
"""
global _epoch
if _epoch is not None:
raise RuntimeError('set_epoch must be called before dates plotted.')
_epoch = epoch
def get_epoch():
"""
Get the epoch used by `.dates`.
Returns
-------
epoch: str
String for the epoch (parsable by `numpy.datetime64`).
"""
global _epoch
if _epoch is None:
_epoch = matplotlib.rcParams['date.epoch']
return _epoch
def _dt64_to_ordinalf(d):
"""
Convert `numpy.datetime64` or an ndarray of those types to Gregorian
date as UTC float relative to the epoch (see `.get_epoch`). Roundoff
is float64 precision. Practically: microseconds for dates between
290301 BC, 294241 AD, milliseconds for larger dates
(see `numpy.datetime64`).
"""
# the "extra" ensures that we at least allow the dynamic range out to
# seconds. That should get out to +/-2e11 years.
dseconds = d.astype('datetime64[s]')
extra = (d - dseconds).astype('timedelta64[ns]')
t0 = np.datetime64(get_epoch(), 's')
dt = (dseconds - t0).astype(np.float64)
dt += extra.astype(np.float64) / 1.0e9
dt = dt / SEC_PER_DAY
NaT_int = np.datetime64('NaT').astype(np.int64)
d_int = d.astype(np.int64)
try:
dt[d_int == NaT_int] = np.nan
except TypeError:
if d_int == NaT_int:
dt = np.nan
return dt
def _from_ordinalf(x, tz=None):
"""
Convert Gregorian float of the date, preserving hours, minutes,
seconds and microseconds. Return value is a `.datetime`.
The input date *x* is a float in ordinal days at UTC, and the output will
be the specified `.datetime` object corresponding to that time in
timezone *tz*, or if *tz* is ``None``, in the timezone specified in
:rc:`timezone`.
"""
if tz is None:
tz = _get_rc_timezone()
dt = (np.datetime64(get_epoch()) +
np.timedelta64(int(np.round(x * MUSECONDS_PER_DAY)), 'us'))
if dt < np.datetime64('0001-01-01') or dt >= np.datetime64('10000-01-01'):
raise ValueError(f'Date ordinal {x} converts to {dt} (using '
f'epoch {get_epoch()}), but Matplotlib dates must be '
'between year 0001 and 9999.')
# convert from datetime64 to datetime:
dt = dt.tolist()
# datetime64 is always UTC:
dt = dt.replace(tzinfo=dateutil.tz.gettz('UTC'))
# but maybe we are working in a different timezone so move.
dt = dt.astimezone(tz)
# fix round off errors
if np.abs(x) > 70 * 365:
# if x is big, round off to nearest twenty microseconds.
# This avoids floating point roundoff error
ms = round(dt.microsecond / 20) * 20
if ms == 1000000:
dt = dt.replace(microsecond=0) + datetime.timedelta(seconds=1)
else:
dt = dt.replace(microsecond=ms)
return dt
# a version of _from_ordinalf that can operate on numpy arrays
_from_ordinalf_np_vectorized = np.vectorize(_from_ordinalf, otypes="O")
# a version of dateutil.parser.parse that can operate on numpy arrays
_dateutil_parser_parse_np_vectorized = np.vectorize(dateutil.parser.parse)
def datestr2num(d, default=None):
"""
Convert a date string to a datenum using `dateutil.parser.parse`.
Parameters
----------
d : str or sequence of str
The dates to convert.
default : datetime.datetime, optional
The default date to use when fields are missing in *d*.
"""
if isinstance(d, str):
dt = dateutil.parser.parse(d, default=default)
return date2num(dt)
else:
if default is not None:
d = [dateutil.parser.parse(s, default=default) for s in d]
d = np.asarray(d)
if not d.size:
return d
return date2num(_dateutil_parser_parse_np_vectorized(d))
def date2num(d):
"""
Convert datetime objects to Matplotlib dates.
Parameters
----------
d : `datetime.datetime` or `numpy.datetime64` or sequences of these
Returns
-------
float or sequence of floats
Number of days since the epoch. See `.get_epoch` for the
epoch, which can be changed by :rc:`date.epoch` or `.set_epoch`. If
the epoch is "1970-01-01T00:00:00" (default) then noon Jan 1 1970
("1970-01-01T12:00:00") returns 0.5.
Notes
-----
The Gregorian calendar is assumed; this is not universal practice.
For details see the module docstring.
"""
if hasattr(d, "values"):
# this unpacks pandas series or dataframes...
d = d.values
# make an iterable, but save state to unpack later:
iterable = np.iterable(d)
if not iterable:
d = [d]
d = np.asarray(d)
# convert to datetime64 arrays, if not already:
if not np.issubdtype(d.dtype, np.datetime64):
# datetime arrays
if not d.size:
# deals with an empty array...
return d
tzi = getattr(d[0], 'tzinfo', None)
if tzi is not None:
# make datetime naive:
d = [dt.astimezone(UTC).replace(tzinfo=None) for dt in d]
d = np.asarray(d)
d = d.astype('datetime64[us]')
d = _dt64_to_ordinalf(d)
return d if iterable else d[0]
def julian2num(j):
"""
Convert a Julian date (or sequence) to a Matplotlib date (or sequence).
Parameters
----------
j : float or sequence of floats
Julian dates (days relative to 4713 BC Jan 1, 12:00:00 Julian
calendar or 4714 BC Nov 24, 12:00:00, proleptic Gregorian calendar).
Returns
-------
float or sequence of floats
Matplotlib dates (days relative to `.get_epoch`).
"""
ep = np.datetime64(get_epoch(), 'h').astype(float) / 24.
ep0 = np.datetime64('0000-12-31T00:00:00', 'h').astype(float) / 24.
# Julian offset defined above is relative to 0000-12-31, but we need
# relative to our current epoch:
dt = JULIAN_OFFSET - ep0 + ep
return np.subtract(j, dt) # Handles both scalar & nonscalar j.
def num2julian(n):
"""
Convert a Matplotlib date (or sequence) to a Julian date (or sequence).
Parameters
----------
n : float or sequence of floats
Matplotlib dates (days relative to `.get_epoch`).
Returns
-------
float or sequence of floats
Julian dates (days relative to 4713 BC Jan 1, 12:00:00).
"""
ep = np.datetime64(get_epoch(), 'h').astype(float) / 24.
ep0 = np.datetime64('0000-12-31T00:00:00', 'h').astype(float) / 24.
# Julian offset defined above is relative to 0000-12-31, but we need
# relative to our current epoch:
dt = JULIAN_OFFSET - ep0 + ep
return np.add(n, dt) # Handles both scalar & nonscalar j.
def num2date(x, tz=None):
"""
Convert Matplotlib dates to `~datetime.datetime` objects.
Parameters
----------
x : float or sequence of floats
Number of days (fraction part represents hours, minutes, seconds)
since the epoch. See `.get_epoch` for the
epoch, which can be changed by :rc:`date.epoch` or `.set_epoch`.
tz : str, optional
Timezone of *x* (defaults to :rc:`timezone`).
Returns
-------
`~datetime.datetime` or sequence of `~datetime.datetime`
Dates are returned in timezone *tz*.
If *x* is a sequence, a sequence of `~datetime.datetime` objects will
be returned.
Notes
-----
The addition of one here is a historical artifact. Also, note that the
Gregorian calendar is assumed; this is not universal practice.
For details, see the module docstring.
"""
if tz is None:
tz = _get_rc_timezone()
return _from_ordinalf_np_vectorized(x, tz).tolist()
_ordinalf_to_timedelta_np_vectorized = np.vectorize(
lambda x: datetime.timedelta(days=x), otypes="O")
def num2timedelta(x):
"""
Convert number of days to a `~datetime.timedelta` object.
If *x* is a sequence, a sequence of `~datetime.timedelta` objects will
be returned.
Parameters
----------
x : float, sequence of floats
Number of days. The fraction part represents hours, minutes, seconds.
Returns
-------
`datetime.timedelta` or list[`datetime.timedelta`]
"""
return _ordinalf_to_timedelta_np_vectorized(x).tolist()
def drange(dstart, dend, delta):
"""
Return a sequence of equally spaced Matplotlib dates.
The dates start at *dstart* and reach up to, but not including *dend*.
They are spaced by *delta*.
Parameters
----------
dstart, dend : `~datetime.datetime`
The date limits.
delta : `datetime.timedelta`
Spacing of the dates.
Returns
-------
`numpy.array`
A list floats representing Matplotlib dates.
"""
f1 = date2num(dstart)
f2 = date2num(dend)
step = delta.total_seconds() / SEC_PER_DAY
# calculate the difference between dend and dstart in times of delta
num = int(np.ceil((f2 - f1) / step))
# calculate end of the interval which will be generated
dinterval_end = dstart + num * delta
# ensure, that an half open interval will be generated [dstart, dend)
if dinterval_end >= dend:
# if the endpoint is greater than dend, just subtract one delta
dinterval_end -= delta
num -= 1
f2 = date2num(dinterval_end) # new float-endpoint
return np.linspace(f1, f2, num + 1)
## date tickers and formatters ###
class DateFormatter(ticker.Formatter):
"""
Format a tick (in days since the epoch) with a
`~datetime.datetime.strftime` format string.
"""
@cbook.deprecated("3.3")
@property
def illegal_s(self):
return re.compile(r"((^|[^%])(%%)*%s)")
def __init__(self, fmt, tz=None):
"""
Parameters
----------
fmt : str
`~datetime.datetime.strftime` format string
tz : `datetime.tzinfo`, default: :rc:`timezone`
Ticks timezone.
"""
if tz is None:
tz = _get_rc_timezone()
self.fmt = fmt
self.tz = tz
def __call__(self, x, pos=0):
return num2date(x, self.tz).strftime(self.fmt)
def set_tzinfo(self, tz):
self.tz = tz
@cbook.deprecated("3.3")
class IndexDateFormatter(ticker.Formatter):
"""Use with `.IndexLocator` to cycle format strings by index."""
def __init__(self, t, fmt, tz=None):
"""
Parameters
----------
t : list of float
A sequence of dates (floating point days).
fmt : str
A `~datetime.datetime.strftime` format string.
"""
if tz is None:
tz = _get_rc_timezone()
self.t = t
self.fmt = fmt
self.tz = tz
def __call__(self, x, pos=0):
"""Return the label for time *x* at position *pos*."""
ind = int(round(x))
if ind >= len(self.t) or ind <= 0:
return ''
return num2date(self.t[ind], self.tz).strftime(self.fmt)
class ConciseDateFormatter(ticker.Formatter):
"""
A `.Formatter` which attempts to figure out the best format to use for the
date, and to make it as compact as possible, but still be complete. This is
most useful when used with the `AutoDateLocator`::
>>> locator = AutoDateLocator()
>>> formatter = ConciseDateFormatter(locator)
Parameters
----------
locator : `.ticker.Locator`
Locator that this axis is using.
tz : str, optional
Passed to `.dates.date2num`.
formats : list of 6 strings, optional
Format strings for 6 levels of tick labelling: mostly years,
months, days, hours, minutes, and seconds. Strings use
the same format codes as `~datetime.datetime.strftime`. Default is
``['%Y', '%b', '%d', '%H:%M', '%H:%M', '%S.%f']``
zero_formats : list of 6 strings, optional
Format strings for tick labels that are "zeros" for a given tick
level. For instance, if most ticks are months, ticks around 1 Jan 2005
will be labeled "Dec", "2005", "Feb". The default is
``['', '%Y', '%b', '%b-%d', '%H:%M', '%H:%M']``
offset_formats : list of 6 strings, optional
Format strings for the 6 levels that is applied to the "offset"
string found on the right side of an x-axis, or top of a y-axis.
Combined with the tick labels this should completely specify the
date. The default is::
['', '%Y', '%Y-%b', '%Y-%b-%d', '%Y-%b-%d', '%Y-%b-%d %H:%M']
show_offset : bool, default: True
Whether to show the offset or not.
Examples
--------
See :doc:`/gallery/ticks_and_spines/date_concise_formatter`
.. plot::
import datetime
import matplotlib.dates as mdates
base = datetime.datetime(2005, 2, 1)
dates = np.array([base + datetime.timedelta(hours=(2 * i))
for i in range(732)])
N = len(dates)
np.random.seed(19680801)
y = np.cumsum(np.random.randn(N))
fig, ax = plt.subplots(constrained_layout=True)
locator = mdates.AutoDateLocator()
formatter = mdates.ConciseDateFormatter(locator)
ax.xaxis.set_major_locator(locator)
ax.xaxis.set_major_formatter(formatter)
ax.plot(dates, y)
ax.set_title('Concise Date Formatter')
"""
def __init__(self, locator, tz=None, formats=None, offset_formats=None,
zero_formats=None, show_offset=True):
"""
Autoformat the date labels. The default format is used to form an
initial string, and then redundant elements are removed.
"""
self._locator = locator
self._tz = tz
self.defaultfmt = '%Y'
# there are 6 levels with each level getting a specific format
# 0: mostly years, 1: months, 2: days,
# 3: hours, 4: minutes, 5: seconds
if formats:
if len(formats) != 6:
raise ValueError('formats argument must be a list of '
'6 format strings (or None)')
self.formats = formats
else:
self.formats = ['%Y', # ticks are mostly years
'%b', # ticks are mostly months
'%d', # ticks are mostly days
'%H:%M', # hrs
'%H:%M', # min
'%S.%f', # secs
]
# fmt for zeros ticks at this level. These are
# ticks that should be labeled w/ info the level above.
# like 1 Jan can just be labelled "Jan". 02:02:00 can
# just be labeled 02:02.
if zero_formats:
if len(zero_formats) != 6:
raise ValueError('zero_formats argument must be a list of '
'6 format strings (or None)')
self.zero_formats = zero_formats
elif formats:
# use the users formats for the zero tick formats
self.zero_formats = [''] + self.formats[:-1]
else:
# make the defaults a bit nicer:
self.zero_formats = [''] + self.formats[:-1]
self.zero_formats[3] = '%b-%d'
if offset_formats:
if len(offset_formats) != 6:
raise ValueError('offsetfmts argument must be a list of '
'6 format strings (or None)')
self.offset_formats = offset_formats
else:
self.offset_formats = ['',
'%Y',
'%Y-%b',
'%Y-%b-%d',
'%Y-%b-%d',
'%Y-%b-%d %H:%M']
self.offset_string = ''
self.show_offset = show_offset
def __call__(self, x, pos=None):
formatter = DateFormatter(self.defaultfmt, self._tz)
return formatter(x, pos=pos)
def format_ticks(self, values):
tickdatetime = [num2date(value, tz=self._tz) for value in values]
tickdate = np.array([tdt.timetuple()[:6] for tdt in tickdatetime])
# basic algorithm:
# 1) only display a part of the date if it changes over the ticks.
# 2) don't display the smaller part of the date if:
# it is always the same or if it is the start of the
# year, month, day etc.
# fmt for most ticks at this level
fmts = self.formats
# format beginnings of days, months, years, etc...
zerofmts = self.zero_formats
# offset fmt are for the offset in the upper left of the
# or lower right of the axis.
offsetfmts = self.offset_formats
# determine the level we will label at:
# mostly 0: years, 1: months, 2: days,
# 3: hours, 4: minutes, 5: seconds, 6: microseconds
for level in range(5, -1, -1):
if len(np.unique(tickdate[:, level])) > 1:
break
# level is the basic level we will label at.
# now loop through and decide the actual ticklabels
zerovals = [0, 1, 1, 0, 0, 0, 0]
labels = [''] * len(tickdate)
for nn in range(len(tickdate)):
if level < 5:
if tickdate[nn][level] == zerovals[level]:
fmt = zerofmts[level]
else:
fmt = fmts[level]
else:
# special handling for seconds + microseconds
if (tickdatetime[nn].second == tickdatetime[nn].microsecond
== 0):
fmt = zerofmts[level]
else:
fmt = fmts[level]
labels[nn] = tickdatetime[nn].strftime(fmt)
# special handling of seconds and microseconds:
# strip extra zeros and decimal if possible.
# this is complicated by two factors. 1) we have some level-4 strings
# here (i.e. 03:00, '0.50000', '1.000') 2) we would like to have the
# same number of decimals for each string (i.e. 0.5 and 1.0).
if level >= 5:
trailing_zeros = min(
(len(s) - len(s.rstrip('0')) for s in labels if '.' in s),
default=None)
if trailing_zeros:
for nn in range(len(labels)):
if '.' in labels[nn]:
labels[nn] = labels[nn][:-trailing_zeros].rstrip('.')
if self.show_offset:
# set the offset string:
self.offset_string = tickdatetime[-1].strftime(offsetfmts[level])
return labels
def get_offset(self):
return self.offset_string
def format_data_short(self, value):
return num2date(value, tz=self._tz).strftime('%Y-%m-%d %H:%M:%S')
class AutoDateFormatter(ticker.Formatter):
"""
A `.Formatter` which attempts to figure out the best format to use. This
is most useful when used with the `AutoDateLocator`.
The AutoDateFormatter has a scale dictionary that maps the scale
of the tick (the distance in days between one major tick) and a
format string. The default looks like this::
self.scaled = {
DAYS_PER_YEAR: rcParams['date.autoformat.year'],
DAYS_PER_MONTH: rcParams['date.autoformat.month'],
1.0: rcParams['date.autoformat.day'],
1. / HOURS_PER_DAY: rcParams['date.autoformat.hour'],
1. / (MINUTES_PER_DAY): rcParams['date.autoformat.minute'],
1. / (SEC_PER_DAY): rcParams['date.autoformat.second'],
1. / (MUSECONDS_PER_DAY): rcParams['date.autoformat.microsecond'],
}
The algorithm picks the key in the dictionary that is >= the
current scale and uses that format string. You can customize this
dictionary by doing::
>>> locator = AutoDateLocator()
>>> formatter = AutoDateFormatter(locator)
>>> formatter.scaled[1/(24.*60.)] = '%M:%S' # only show min and sec
A custom `.FuncFormatter` can also be used. The following example shows
how to use a custom format function to strip trailing zeros from decimal
seconds and adds the date to the first ticklabel::
>>> def my_format_function(x, pos=None):
... x = matplotlib.dates.num2date(x)
... if pos == 0:
... fmt = '%D %H:%M:%S.%f'
... else:
... fmt = '%H:%M:%S.%f'
... label = x.strftime(fmt)
... label = label.rstrip("0")
... label = label.rstrip(".")
... return label
>>> from matplotlib.ticker import FuncFormatter
>>> formatter.scaled[1/(24.*60.)] = FuncFormatter(my_format_function)
"""
# This can be improved by providing some user-level direction on
# how to choose the best format (precedence, etc...)
# Perhaps a 'struct' that has a field for each time-type where a
# zero would indicate "don't show" and a number would indicate
# "show" with some sort of priority. Same priorities could mean
# show all with the same priority.
# Or more simply, perhaps just a format string for each
# possibility...
def __init__(self, locator, tz=None, defaultfmt='%Y-%m-%d'):
"""
Autoformat the date labels. The default format is the one to use
if none of the values in ``self.scaled`` are greater than the unit
returned by ``locator._get_unit()``.
"""
self._locator = locator
self._tz = tz
self.defaultfmt = defaultfmt
self._formatter = DateFormatter(self.defaultfmt, tz)
rcParams = matplotlib.rcParams
self.scaled = {
DAYS_PER_YEAR: rcParams['date.autoformatter.year'],
DAYS_PER_MONTH: rcParams['date.autoformatter.month'],
1: rcParams['date.autoformatter.day'],
1 / HOURS_PER_DAY: rcParams['date.autoformatter.hour'],
1 / MINUTES_PER_DAY: rcParams['date.autoformatter.minute'],
1 / SEC_PER_DAY: rcParams['date.autoformatter.second'],
1 / MUSECONDS_PER_DAY: rcParams['date.autoformatter.microsecond']
}
def _set_locator(self, locator):
self._locator = locator
def __call__(self, x, pos=None):
try:
locator_unit_scale = float(self._locator._get_unit())
except AttributeError:
locator_unit_scale = 1
# Pick the first scale which is greater than the locator unit.
fmt = next((fmt for scale, fmt in sorted(self.scaled.items())
if scale >= locator_unit_scale),
self.defaultfmt)
if isinstance(fmt, str):
self._formatter = DateFormatter(fmt, self._tz)
result = self._formatter(x, pos)
elif callable(fmt):
result = fmt(x, pos)
else:
raise TypeError('Unexpected type passed to {0!r}.'.format(self))
return result
class rrulewrapper:
def __init__(self, freq, tzinfo=None, **kwargs):
kwargs['freq'] = freq
self._base_tzinfo = tzinfo
self._update_rrule(**kwargs)
def set(self, **kwargs):
self._construct.update(kwargs)
self._update_rrule(**self._construct)
def _update_rrule(self, **kwargs):
tzinfo = self._base_tzinfo
# rrule does not play nicely with time zones - especially pytz time
# zones, it's best to use naive zones and attach timezones once the
# datetimes are returned
if 'dtstart' in kwargs:
dtstart = kwargs['dtstart']
if dtstart.tzinfo is not None:
if tzinfo is None:
tzinfo = dtstart.tzinfo
else:
dtstart = dtstart.astimezone(tzinfo)
kwargs['dtstart'] = dtstart.replace(tzinfo=None)
if 'until' in kwargs:
until = kwargs['until']
if until.tzinfo is not None:
if tzinfo is not None:
until = until.astimezone(tzinfo)
else:
raise ValueError('until cannot be aware if dtstart '
'is naive and tzinfo is None')
kwargs['until'] = until.replace(tzinfo=None)
self._construct = kwargs.copy()
self._tzinfo = tzinfo
self._rrule = rrule(**self._construct)
def _attach_tzinfo(self, dt, tzinfo):
# pytz zones are attached by "localizing" the datetime
if hasattr(tzinfo, 'localize'):
return tzinfo.localize(dt, is_dst=True)
return dt.replace(tzinfo=tzinfo)
def _aware_return_wrapper(self, f, returns_list=False):
"""Decorator function that allows rrule methods to handle tzinfo."""
# This is only necessary if we're actually attaching a tzinfo
if self._tzinfo is None:
return f
# All datetime arguments must be naive. If they are not naive, they are
# converted to the _tzinfo zone before dropping the zone.
def normalize_arg(arg):
if isinstance(arg, datetime.datetime) and arg.tzinfo is not None:
if arg.tzinfo is not self._tzinfo:
arg = arg.astimezone(self._tzinfo)
return arg.replace(tzinfo=None)
return arg
def normalize_args(args, kwargs):
args = tuple(normalize_arg(arg) for arg in args)
kwargs = {kw: normalize_arg(arg) for kw, arg in kwargs.items()}
return args, kwargs
# There are two kinds of functions we care about - ones that return
# dates and ones that return lists of dates.
if not returns_list:
def inner_func(*args, **kwargs):
args, kwargs = normalize_args(args, kwargs)
dt = f(*args, **kwargs)
return self._attach_tzinfo(dt, self._tzinfo)
else:
def inner_func(*args, **kwargs):
args, kwargs = normalize_args(args, kwargs)
dts = f(*args, **kwargs)
return [self._attach_tzinfo(dt, self._tzinfo) for dt in dts]
return functools.wraps(f)(inner_func)
def __getattr__(self, name):
if name in self.__dict__:
return self.__dict__[name]
f = getattr(self._rrule, name)
if name in {'after', 'before'}:
return self._aware_return_wrapper(f)
elif name in {'xafter', 'xbefore', 'between'}:
return self._aware_return_wrapper(f, returns_list=True)
else:
return f
def __setstate__(self, state):
self.__dict__.update(state)
class DateLocator(ticker.Locator):
"""
Determines the tick locations when plotting dates.
This class is subclassed by other Locators and
is not meant to be used on its own.
"""
hms0d = {'byhour': 0, 'byminute': 0, 'bysecond': 0}
def __init__(self, tz=None):
"""
Parameters
----------
tz : `datetime.tzinfo`
"""
if tz is None:
tz = _get_rc_timezone()
self.tz = tz
def set_tzinfo(self, tz):
"""
Set time zone info.
"""
self.tz = tz
def datalim_to_dt(self):
"""Convert axis data interval to datetime objects."""
dmin, dmax = self.axis.get_data_interval()
if dmin > dmax:
dmin, dmax = dmax, dmin
return num2date(dmin, self.tz), num2date(dmax, self.tz)
def viewlim_to_dt(self):
"""Convert the view interval to datetime objects."""
vmin, vmax = self.axis.get_view_interval()
if vmin > vmax:
vmin, vmax = vmax, vmin
return num2date(vmin, self.tz), num2date(vmax, self.tz)
def _get_unit(self):
"""
Return how many days a unit of the locator is; used for
intelligent autoscaling.
"""
return 1
def _get_interval(self):
"""
Return the number of units for each tick.
"""
return 1
def nonsingular(self, vmin, vmax):
"""
Given the proposed upper and lower extent, adjust the range
if it is too close to being singular (i.e. a range of ~0).
"""
if not np.isfinite(vmin) or not np.isfinite(vmax):
# Except if there is no data, then use 2000-2010 as default.
return (date2num(datetime.date(2000, 1, 1)),
date2num(datetime.date(2010, 1, 1)))
if vmax < vmin:
vmin, vmax = vmax, vmin
unit = self._get_unit()
interval = self._get_interval()
if abs(vmax - vmin) < 1e-6:
vmin -= 2 * unit * interval
vmax += 2 * unit * interval
return vmin, vmax
class RRuleLocator(DateLocator):
# use the dateutil rrule instance
def __init__(self, o, tz=None):
DateLocator.__init__(self, tz)
self.rule = o
def __call__(self):
# if no data have been set, this will tank with a ValueError
try:
dmin, dmax = self.viewlim_to_dt()
except ValueError:
return []
return self.tick_values(dmin, dmax)
def tick_values(self, vmin, vmax):
delta = relativedelta(vmax, vmin)
# We need to cap at the endpoints of valid datetime
try:
start = vmin - delta
except (ValueError, OverflowError):
# cap
start = datetime.datetime(1, 1, 1, 0, 0, 0,
tzinfo=datetime.timezone.utc)
try:
stop = vmax + delta
except (ValueError, OverflowError):
# cap
stop = datetime.datetime(9999, 12, 31, 23, 59, 59,
tzinfo=datetime.timezone.utc)
self.rule.set(dtstart=start, until=stop)
dates = self.rule.between(vmin, vmax, True)
if len(dates) == 0:
return date2num([vmin, vmax])
return self.raise_if_exceeds(date2num(dates))
def _get_unit(self):
# docstring inherited
freq = self.rule._rrule._freq
return self.get_unit_generic(freq)
@staticmethod
def get_unit_generic(freq):
if freq == YEARLY:
return DAYS_PER_YEAR
elif freq == MONTHLY:
return DAYS_PER_MONTH
elif freq == WEEKLY:
return DAYS_PER_WEEK
elif freq == DAILY:
return 1.0
elif freq == HOURLY:
return 1.0 / HOURS_PER_DAY
elif freq == MINUTELY:
return 1.0 / MINUTES_PER_DAY
elif freq == SECONDLY:
return 1.0 / SEC_PER_DAY
else:
# error
return -1 # or should this just return '1'?
def _get_interval(self):
return self.rule._rrule._interval
@cbook.deprecated("3.2")
def autoscale(self):
"""
Set the view limits to include the data range.
"""
dmin, dmax = self.datalim_to_dt()
delta = relativedelta(dmax, dmin)
# We need to cap at the endpoints of valid datetime
try:
start = dmin - delta
except ValueError:
start = _from_ordinalf(1.0)
try:
stop = dmax + delta
except ValueError:
# The magic number!
stop = _from_ordinalf(3652059.9999999)
self.rule.set(dtstart=start, until=stop)
dmin, dmax = self.datalim_to_dt()
vmin = self.rule.before(dmin, True)
if not vmin:
vmin = dmin
vmax = self.rule.after(dmax, True)
if not vmax:
vmax = dmax
vmin = date2num(vmin)
vmax = date2num(vmax)
return self.nonsingular(vmin, vmax)
class AutoDateLocator(DateLocator):
"""
On autoscale, this class picks the best `DateLocator` to set the view
limits and the tick locations.
Attributes
----------
intervald : dict
Mapping of tick frequencies to multiples allowed for that ticking.
The default is ::
self.intervald = {
YEARLY : [1, 2, 4, 5, 10, 20, 40, 50, 100, 200, 400, 500,
1000, 2000, 4000, 5000, 10000],
MONTHLY : [1, 2, 3, 4, 6],
DAILY : [1, 2, 3, 7, 14, 21],
HOURLY : [1, 2, 3, 4, 6, 12],
MINUTELY: [1, 5, 10, 15, 30],
SECONDLY: [1, 5, 10, 15, 30],
MICROSECONDLY: [1, 2, 5, 10, 20, 50, 100, 200, 500,
1000, 2000, 5000, 10000, 20000, 50000,
100000, 200000, 500000, 1000000],
}
where the keys are defined in `dateutil.rrule`.
The interval is used to specify multiples that are appropriate for
the frequency of ticking. For instance, every 7 days is sensible
for daily ticks, but for minutes/seconds, 15 or 30 make sense.
When customizing, you should only modify the values for the existing
keys. You should not add or delete entries.
Example for forcing ticks every 3 hours::
locator = AutoDateLocator()
locator.intervald[HOURLY] = [3] # only show every 3 hours
"""
def __init__(self, tz=None, minticks=5, maxticks=None,
interval_multiples=True):
"""
Parameters
----------
tz : `datetime.tzinfo`
Ticks timezone.
minticks : int
The minimum number of ticks desired; controls whether ticks occur
yearly, monthly, etc.
maxticks : int
The maximum number of ticks desired; controls the interval between
ticks (ticking every other, every 3, etc.). For fine-grained
control, this can be a dictionary mapping individual rrule
frequency constants (YEARLY, MONTHLY, etc.) to their own maximum
number of ticks. This can be used to keep the number of ticks
appropriate to the format chosen in `AutoDateFormatter`. Any
frequency not specified in this dictionary is given a default
value.
interval_multiples : bool, default: True
Whether ticks should be chosen to be multiple of the interval,
locking them to 'nicer' locations. For example, this will force
the ticks to be at hours 0, 6, 12, 18 when hourly ticking is done
at 6 hour intervals.
"""
DateLocator.__init__(self, tz)
self._freq = YEARLY
self._freqs = [YEARLY, MONTHLY, DAILY, HOURLY, MINUTELY,
SECONDLY, MICROSECONDLY]
self.minticks = minticks
self.maxticks = {YEARLY: 11, MONTHLY: 12, DAILY: 11, HOURLY: 12,
MINUTELY: 11, SECONDLY: 11, MICROSECONDLY: 8}
if maxticks is not None:
try:
self.maxticks.update(maxticks)
except TypeError:
# Assume we were given an integer. Use this as the maximum
# number of ticks for every frequency and create a
# dictionary for this
self.maxticks = dict.fromkeys(self._freqs, maxticks)
self.interval_multiples = interval_multiples
self.intervald = {
YEARLY: [1, 2, 4, 5, 10, 20, 40, 50, 100, 200, 400, 500,
1000, 2000, 4000, 5000, 10000],
MONTHLY: [1, 2, 3, 4, 6],
DAILY: [1, 2, 3, 7, 14, 21],
HOURLY: [1, 2, 3, 4, 6, 12],
MINUTELY: [1, 5, 10, 15, 30],
SECONDLY: [1, 5, 10, 15, 30],
MICROSECONDLY: [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000,
5000, 10000, 20000, 50000, 100000, 200000, 500000,
1000000],
}
if interval_multiples:
# Swap "3" for "4" in the DAILY list; If we use 3 we get bad
# tick loc for months w/ 31 days: 1, 4, ..., 28, 31, 1
# If we use 4 then we get: 1, 5, ... 25, 29, 1
self.intervald[DAILY] = [1, 2, 4, 7, 14, 21]
self._byranges = [None, range(1, 13), range(1, 32),
range(0, 24), range(0, 60), range(0, 60), None]
def __call__(self):
# docstring inherited
dmin, dmax = self.viewlim_to_dt()
locator = self.get_locator(dmin, dmax)
return locator()
def tick_values(self, vmin, vmax):
return self.get_locator(vmin, vmax).tick_values(vmin, vmax)
def nonsingular(self, vmin, vmax):
# whatever is thrown at us, we can scale the unit.
# But default nonsingular date plots at an ~4 year period.
if not np.isfinite(vmin) or not np.isfinite(vmax):
# Except if there is no data, then use 2000-2010 as default.
return (date2num(datetime.date(2000, 1, 1)),
date2num(datetime.date(2010, 1, 1)))
if vmax < vmin:
vmin, vmax = vmax, vmin
if vmin == vmax:
vmin = vmin - DAYS_PER_YEAR * 2
vmax = vmax + DAYS_PER_YEAR * 2
return vmin, vmax
def _get_unit(self):
if self._freq in [MICROSECONDLY]:
return 1. / MUSECONDS_PER_DAY
else:
return RRuleLocator.get_unit_generic(self._freq)
@cbook.deprecated("3.2")
def autoscale(self):
"""Try to choose the view limits intelligently."""
dmin, dmax = self.datalim_to_dt()
return self.get_locator(dmin, dmax).autoscale()
def get_locator(self, dmin, dmax):
"""Pick the best locator based on a distance."""
delta = relativedelta(dmax, dmin)
tdelta = dmax - dmin
# take absolute difference
if dmin > dmax:
delta = -delta
tdelta = -tdelta
# The following uses a mix of calls to relativedelta and timedelta
# methods because there is incomplete overlap in the functionality of
# these similar functions, and it's best to avoid doing our own math
# whenever possible.
numYears = float(delta.years)
numMonths = numYears * MONTHS_PER_YEAR + delta.months
numDays = tdelta.days # Avoids estimates of days/month, days/year
numHours = numDays * HOURS_PER_DAY + delta.hours
numMinutes = numHours * MIN_PER_HOUR + delta.minutes
numSeconds = np.floor(tdelta.total_seconds())
numMicroseconds = np.floor(tdelta.total_seconds() * 1e6)
nums = [numYears, numMonths, numDays, numHours, numMinutes,
numSeconds, numMicroseconds]
use_rrule_locator = [True] * 6 + [False]
# Default setting of bymonth, etc. to pass to rrule
# [unused (for year), bymonth, bymonthday, byhour, byminute,
# bysecond, unused (for microseconds)]
byranges = [None, 1, 1, 0, 0, 0, None]
# Loop over all the frequencies and try to find one that gives at
# least a minticks tick positions. Once this is found, look for
# an interval from an list specific to that frequency that gives no
# more than maxticks tick positions. Also, set up some ranges
# (bymonth, etc.) as appropriate to be passed to rrulewrapper.
for i, (freq, num) in enumerate(zip(self._freqs, nums)):
# If this particular frequency doesn't give enough ticks, continue
if num < self.minticks:
# Since we're not using this particular frequency, set
# the corresponding by_ to None so the rrule can act as
# appropriate
byranges[i] = None
continue
# Find the first available interval that doesn't give too many
# ticks
for interval in self.intervald[freq]:
if num <= interval * (self.maxticks[freq] - 1):
break
else:
# We went through the whole loop without breaking, default to
# the last interval in the list and raise a warning
cbook._warn_external(
f"AutoDateLocator was unable to pick an appropriate "
f"interval for this date range. It may be necessary to "
f"add an interval value to the AutoDateLocator's "
f"intervald dictionary. Defaulting to {interval}.")
# Set some parameters as appropriate
self._freq = freq
if self._byranges[i] and self.interval_multiples:
byranges[i] = self._byranges[i][::interval]
if i in (DAILY, WEEKLY):
if interval == 14:
# just make first and 15th. Avoids 30th.
byranges[i] = [1, 15]
elif interval == 7:
byranges[i] = [1, 8, 15, 22]
interval = 1
else:
byranges[i] = self._byranges[i]
break
else:
interval = 1
if (freq == YEARLY) and self.interval_multiples:
locator = YearLocator(interval, tz=self.tz)
elif use_rrule_locator[i]:
_, bymonth, bymonthday, byhour, byminute, bysecond, _ = byranges
rrule = rrulewrapper(self._freq, interval=interval,
dtstart=dmin, until=dmax,
bymonth=bymonth, bymonthday=bymonthday,
byhour=byhour, byminute=byminute,
bysecond=bysecond)
locator = RRuleLocator(rrule, self.tz)
else:
locator = MicrosecondLocator(interval, tz=self.tz)
if date2num(dmin) > 70 * 365 and interval < 1000:
cbook._warn_external(
'Plotting microsecond time intervals for dates far from '
f'the epoch (time origin: {get_epoch()}) is not well-'
'supported. See matplotlib.dates.set_epoch to change the '
'epoch.')
locator.set_axis(self.axis)
if self.axis is not None:
locator.set_view_interval(*self.axis.get_view_interval())
locator.set_data_interval(*self.axis.get_data_interval())
return locator
class YearLocator(DateLocator):
"""
Make ticks on a given day of each year that is a multiple of base.
Examples::
# Tick every year on Jan 1st
locator = YearLocator()
# Tick every 5 years on July 4th
locator = YearLocator(5, month=7, day=4)
"""
def __init__(self, base=1, month=1, day=1, tz=None):
"""
Mark years that are multiple of base on a given month and day
(default jan 1).
"""
DateLocator.__init__(self, tz)
self.base = ticker._Edge_integer(base, 0)
self.replaced = {'month': month,
'day': day,
'hour': 0,
'minute': 0,
'second': 0,
}
if not hasattr(tz, 'localize'):
# if tz is pytz, we need to do this w/ the localize fcn,
# otherwise datetime.replace works fine...
self.replaced['tzinfo'] = tz
def __call__(self):
# if no data have been set, this will tank with a ValueError
try:
dmin, dmax = self.viewlim_to_dt()
except ValueError:
return []
return self.tick_values(dmin, dmax)
def tick_values(self, vmin, vmax):
ymin = self.base.le(vmin.year) * self.base.step
ymax = self.base.ge(vmax.year) * self.base.step
vmin = vmin.replace(year=ymin, **self.replaced)
if hasattr(self.tz, 'localize'):
# look after pytz
if not vmin.tzinfo:
vmin = self.tz.localize(vmin, is_dst=True)
ticks = [vmin]
while True:
dt = ticks[-1]
if dt.year >= ymax:
return date2num(ticks)
year = dt.year + self.base.step
dt = dt.replace(year=year, **self.replaced)
if hasattr(self.tz, 'localize'):
# look after pytz
if not dt.tzinfo:
dt = self.tz.localize(dt, is_dst=True)
ticks.append(dt)
@cbook.deprecated("3.2")
def autoscale(self):
"""
Set the view limits to include the data range.
"""
dmin, dmax = self.datalim_to_dt()
ymin = self.base.le(dmin.year)
ymax = self.base.ge(dmax.year)
vmin = dmin.replace(year=ymin, **self.replaced)
vmin = vmin.astimezone(self.tz)
vmax = dmax.replace(year=ymax, **self.replaced)
vmax = vmax.astimezone(self.tz)
vmin = date2num(vmin)
vmax = date2num(vmax)
return self.nonsingular(vmin, vmax)
class MonthLocator(RRuleLocator):
"""
Make ticks on occurrences of each month, e.g., 1, 3, 12.
"""
def __init__(self, bymonth=None, bymonthday=1, interval=1, tz=None):
"""
Mark every month in *bymonth*; *bymonth* can be an int or
sequence. Default is ``range(1, 13)``, i.e. every month.
*interval* is the interval between each iteration. For
example, if ``interval=2``, mark every second occurrence.
"""
if bymonth is None:
bymonth = range(1, 13)
elif isinstance(bymonth, np.ndarray):
# This fixes a bug in dateutil <= 2.3 which prevents the use of
# numpy arrays in (among other things) the bymonthday, byweekday
# and bymonth parameters.
bymonth = [x.item() for x in bymonth.astype(int)]
rule = rrulewrapper(MONTHLY, bymonth=bymonth, bymonthday=bymonthday,
interval=interval, **self.hms0d)
RRuleLocator.__init__(self, rule, tz)
class WeekdayLocator(RRuleLocator):
"""
Make ticks on occurrences of each weekday.
"""
def __init__(self, byweekday=1, interval=1, tz=None):
"""
Mark every weekday in *byweekday*; *byweekday* can be a number or
sequence.
Elements of *byweekday* must be one of MO, TU, WE, TH, FR, SA,
SU, the constants from :mod:`dateutil.rrule`, which have been
imported into the :mod:`matplotlib.dates` namespace.
*interval* specifies the number of weeks to skip. For example,
``interval=2`` plots every second week.
"""
if isinstance(byweekday, np.ndarray):
# This fixes a bug in dateutil <= 2.3 which prevents the use of
# numpy arrays in (among other things) the bymonthday, byweekday
# and bymonth parameters.
[x.item() for x in byweekday.astype(int)]
rule = rrulewrapper(DAILY, byweekday=byweekday,
interval=interval, **self.hms0d)
RRuleLocator.__init__(self, rule, tz)
class DayLocator(RRuleLocator):
"""
Make ticks on occurrences of each day of the month. For example,
1, 15, 30.
"""
def __init__(self, bymonthday=None, interval=1, tz=None):
"""
Mark every day in *bymonthday*; *bymonthday* can be an int or sequence.
Default is to tick every day of the month: ``bymonthday=range(1, 32)``.
"""
if interval != int(interval) or interval < 1:
raise ValueError("interval must be an integer greater than 0")
if bymonthday is None:
bymonthday = range(1, 32)
elif isinstance(bymonthday, np.ndarray):
# This fixes a bug in dateutil <= 2.3 which prevents the use of
# numpy arrays in (among other things) the bymonthday, byweekday
# and bymonth parameters.
bymonthday = [x.item() for x in bymonthday.astype(int)]
rule = rrulewrapper(DAILY, bymonthday=bymonthday,
interval=interval, **self.hms0d)
RRuleLocator.__init__(self, rule, tz)
class HourLocator(RRuleLocator):
"""
Make ticks on occurrences of each hour.
"""
def __init__(self, byhour=None, interval=1, tz=None):
"""
Mark every hour in *byhour*; *byhour* can be an int or sequence.
Default is to tick every hour: ``byhour=range(24)``
*interval* is the interval between each iteration. For
example, if ``interval=2``, mark every second occurrence.
"""
if byhour is None:
byhour = range(24)
rule = rrulewrapper(HOURLY, byhour=byhour, interval=interval,
byminute=0, bysecond=0)
RRuleLocator.__init__(self, rule, tz)
class MinuteLocator(RRuleLocator):
"""
Make ticks on occurrences of each minute.
"""
def __init__(self, byminute=None, interval=1, tz=None):
"""
Mark every minute in *byminute*; *byminute* can be an int or
sequence. Default is to tick every minute: ``byminute=range(60)``
*interval* is the interval between each iteration. For
example, if ``interval=2``, mark every second occurrence.
"""
if byminute is None:
byminute = range(60)
rule = rrulewrapper(MINUTELY, byminute=byminute, interval=interval,
bysecond=0)
RRuleLocator.__init__(self, rule, tz)
class SecondLocator(RRuleLocator):
"""
Make ticks on occurrences of each second.
"""
def __init__(self, bysecond=None, interval=1, tz=None):
"""
Mark every second in *bysecond*; *bysecond* can be an int or
sequence. Default is to tick every second: ``bysecond = range(60)``
*interval* is the interval between each iteration. For
example, if ``interval=2``, mark every second occurrence.
"""
if bysecond is None:
bysecond = range(60)
rule = rrulewrapper(SECONDLY, bysecond=bysecond, interval=interval)
RRuleLocator.__init__(self, rule, tz)
class MicrosecondLocator(DateLocator):
"""
Make ticks on regular intervals of one or more microsecond(s).
.. note::
By default, Matplotlib uses a floating point representation of time in
days since the epoch, so plotting data with
microsecond time resolution does not work well for
dates that are far (about 70 years) from the epoch (check with
`~.dates.get_epoch`).
If you want sub-microsecond resolution time plots, it is strongly
recommended to use floating point seconds, not datetime-like
time representation.
If you really must use datetime.datetime() or similar and still
need microsecond precision, change the time origin via
`.dates.set_epoch` to something closer to the dates being plotted.
See :doc:`/gallery/ticks_and_spines/date_precision_and_epochs`.
"""
def __init__(self, interval=1, tz=None):
"""
*interval* is the interval between each iteration. For
example, if ``interval=2``, mark every second microsecond.
"""
self._interval = interval
self._wrapped_locator = ticker.MultipleLocator(interval)
self.tz = tz
def set_axis(self, axis):
self._wrapped_locator.set_axis(axis)
return DateLocator.set_axis(self, axis)
def set_view_interval(self, vmin, vmax):
self._wrapped_locator.set_view_interval(vmin, vmax)
return DateLocator.set_view_interval(self, vmin, vmax)
def set_data_interval(self, vmin, vmax):
self._wrapped_locator.set_data_interval(vmin, vmax)
return DateLocator.set_data_interval(self, vmin, vmax)
def __call__(self):
# if no data have been set, this will tank with a ValueError
try:
dmin, dmax = self.viewlim_to_dt()
except ValueError:
return []
return self.tick_values(dmin, dmax)
def tick_values(self, vmin, vmax):
nmin, nmax = date2num((vmin, vmax))
t0 = np.floor(nmin)
nmax = nmax - t0
nmin = nmin - t0
nmin *= MUSECONDS_PER_DAY
nmax *= MUSECONDS_PER_DAY
ticks = self._wrapped_locator.tick_values(nmin, nmax)
ticks = ticks / MUSECONDS_PER_DAY + t0
return ticks
def _get_unit(self):
# docstring inherited
return 1. / MUSECONDS_PER_DAY
def _get_interval(self):
# docstring inherited
return self._interval
def epoch2num(e):
"""
Convert UNIX time to days since Matplotlib epoch.
Parameters
----------
e : list of floats
Time in seconds since 1970-01-01.
Returns
-------
`numpy.array`
Time in days since Matplotlib epoch (see `~.dates.get_epoch()`).
"""
dt = (np.datetime64('1970-01-01T00:00:00', 's') -
np.datetime64(get_epoch(), 's')).astype(float)
return (dt + np.asarray(e)) / SEC_PER_DAY
def num2epoch(d):
"""
Convert days since Matplotlib epoch to UNIX time.
Parameters
----------
d : list of floats
Time in days since Matplotlib epoch (see `~.dates.get_epoch()`).
Returns
-------
`numpy.array`
Time in seconds since 1970-01-01.
"""
dt = (np.datetime64('1970-01-01T00:00:00', 's') -
np.datetime64(get_epoch(), 's')).astype(float)
return np.asarray(d) * SEC_PER_DAY - dt
@cbook.deprecated("3.2")
def mx2num(mxdates):
"""
Convert mx :class:`datetime` instance (or sequence of mx
instances) to the new date format.
"""
scalar = False
if not np.iterable(mxdates):
scalar = True
mxdates = [mxdates]
ret = epoch2num([m.ticks() for m in mxdates])
if scalar:
return ret[0]
else:
return ret
def date_ticker_factory(span, tz=None, numticks=5):
"""
Create a date locator with *numticks* (approx) and a date formatter
for *span* in days. Return value is (locator, formatter).
"""
if span == 0:
span = 1 / HOURS_PER_DAY
mins = span * MINUTES_PER_DAY
hrs = span * HOURS_PER_DAY
days = span
wks = span / DAYS_PER_WEEK
months = span / DAYS_PER_MONTH # Approx
years = span / DAYS_PER_YEAR # Approx
if years > numticks:
locator = YearLocator(int(years / numticks), tz=tz) # define
fmt = '%Y'
elif months > numticks:
locator = MonthLocator(tz=tz)
fmt = '%b %Y'
elif wks > numticks:
locator = WeekdayLocator(tz=tz)
fmt = '%a, %b %d'
elif days > numticks:
locator = DayLocator(interval=math.ceil(days / numticks), tz=tz)
fmt = '%b %d'
elif hrs > numticks:
locator = HourLocator(interval=math.ceil(hrs / numticks), tz=tz)
fmt = '%H:%M\n%b %d'
elif mins > numticks:
locator = MinuteLocator(interval=math.ceil(mins / numticks), tz=tz)
fmt = '%H:%M:%S'
else:
locator = MinuteLocator(tz=tz)
fmt = '%H:%M:%S'
formatter = DateFormatter(fmt, tz=tz)
return locator, formatter
class DateConverter(units.ConversionInterface):
"""
Converter for `datetime.date` and `datetime.datetime` data, or for
date/time data represented as it would be converted by `date2num`.
The 'unit' tag for such data is None or a tzinfo instance.
"""
@staticmethod
def axisinfo(unit, axis):
"""
Return the `~matplotlib.units.AxisInfo` for *unit*.
*unit* is a tzinfo instance or None.
The *axis* argument is required but not used.
"""
tz = unit
majloc = AutoDateLocator(tz=tz)
majfmt = AutoDateFormatter(majloc, tz=tz)
datemin = datetime.date(2000, 1, 1)
datemax = datetime.date(2010, 1, 1)
return units.AxisInfo(majloc=majloc, majfmt=majfmt, label='',
default_limits=(datemin, datemax))
@staticmethod
def convert(value, unit, axis):
"""
If *value* is not already a number or sequence of numbers, convert it
with `date2num`.
The *unit* and *axis* arguments are not used.
"""
return date2num(value)
@staticmethod
def default_units(x, axis):
"""
Return the tzinfo instance of *x* or of its first element, or None
"""
if isinstance(x, np.ndarray):
x = x.ravel()
try:
x = cbook.safe_first_element(x)
except (TypeError, StopIteration):
pass
try:
return x.tzinfo
except AttributeError:
pass
return None
class ConciseDateConverter(DateConverter):
# docstring inherited
def __init__(self, formats=None, zero_formats=None, offset_formats=None,
show_offset=True):
self._formats = formats
self._zero_formats = zero_formats
self._offset_formats = offset_formats
self._show_offset = show_offset
super().__init__()
def axisinfo(self, unit, axis):
# docstring inherited
tz = unit
majloc = AutoDateLocator(tz=tz)
majfmt = ConciseDateFormatter(majloc, tz=tz, formats=self._formats,
zero_formats=self._zero_formats,
offset_formats=self._offset_formats,
show_offset=self._show_offset)
datemin = datetime.date(2000, 1, 1)
datemax = datetime.date(2010, 1, 1)
return units.AxisInfo(majloc=majloc, majfmt=majfmt, label='',
default_limits=(datemin, datemax))
units.registry[np.datetime64] = DateConverter()
units.registry[datetime.date] = DateConverter()
units.registry[datetime.datetime] = DateConverter()