1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
"""
Numerical python functions written for compatibility with MATLAB
commands with the same names. Most numerical python functions can be found in
the `numpy` and `scipy` libraries. What remains here is code for performing
spectral computations.

Spectral functions
-------------------

`cohere`
    Coherence (normalized cross spectral density)

`csd`
    Cross spectral density using Welch's average periodogram

`detrend`
    Remove the mean or best fit line from an array

`psd`
    Power spectral density using Welch's average periodogram

`specgram`
    Spectrogram (spectrum over segments of time)

`complex_spectrum`
    Return the complex-valued frequency spectrum of a signal

`magnitude_spectrum`
    Return the magnitude of the frequency spectrum of a signal

`angle_spectrum`
    Return the angle (wrapped phase) of the frequency spectrum of a signal

`phase_spectrum`
    Return the phase (unwrapped angle) of the frequency spectrum of a signal

`detrend_mean`
    Remove the mean from a line.

`detrend_linear`
    Remove the best fit line from a line.

`detrend_none`
    Return the original line.

`stride_windows`
    Get all windows in an array in a memory-efficient manner

`stride_repeat`
    Repeat an array in a memory-efficient manner

`apply_window`
    Apply a window along a given axis
"""

import functools
from numbers import Number

import numpy as np

import matplotlib.cbook as cbook
from matplotlib import docstring


def window_hanning(x):
    """
    Return x times the hanning window of len(x).

    See Also
    --------
    window_none : Another window algorithm.
    """
    return np.hanning(len(x))*x


def window_none(x):
    """
    No window function; simply return x.

    See Also
    --------
    window_hanning : Another window algorithm.
    """
    return x


@cbook.deprecated("3.2")
def apply_window(x, window, axis=0, return_window=None):
    """
    Apply the given window to the given 1D or 2D array along the given axis.

    Parameters
    ----------
    x : 1D or 2D array or sequence
        Array or sequence containing the data.

    window : function or array.
        Either a function to generate a window or an array with length
        *x*.shape[*axis*]

    axis : int
        The axis over which to do the repetition.
        Must be 0 or 1.  The default is 0

    return_window : bool
        If true, also return the 1D values of the window that was applied
    """
    x = np.asarray(x)

    if x.ndim < 1 or x.ndim > 2:
        raise ValueError('only 1D or 2D arrays can be used')
    if axis+1 > x.ndim:
        raise ValueError('axis(=%s) out of bounds' % axis)

    xshape = list(x.shape)
    xshapetarg = xshape.pop(axis)

    if np.iterable(window):
        if len(window) != xshapetarg:
            raise ValueError('The len(window) must be the same as the shape '
                             'of x for the chosen axis')
        windowVals = window
    else:
        windowVals = window(np.ones(xshapetarg, dtype=x.dtype))

    if x.ndim == 1:
        if return_window:
            return windowVals * x, windowVals
        else:
            return windowVals * x

    xshapeother = xshape.pop()

    otheraxis = (axis+1) % 2

    windowValsRep = stride_repeat(windowVals, xshapeother, axis=otheraxis)

    if return_window:
        return windowValsRep * x, windowVals
    else:
        return windowValsRep * x


def detrend(x, key=None, axis=None):
    """
    Return x with its trend removed.

    Parameters
    ----------
    x : array or sequence
        Array or sequence containing the data.

    key : {'default', 'constant', 'mean', 'linear', 'none'} or function
        The detrending algorithm to use. 'default', 'mean', and 'constant' are
        the same as `detrend_mean`. 'linear' is the same as `detrend_linear`.
        'none' is the same as `detrend_none`. The default is 'mean'. See the
        corresponding functions for more details regarding the algorithms. Can
        also be a function that carries out the detrend operation.

    axis : int
        The axis along which to do the detrending.

    See Also
    --------
    detrend_mean : Implementation of the 'mean' algorithm.
    detrend_linear : Implementation of the 'linear' algorithm.
    detrend_none : Implementation of the 'none' algorithm.
    """
    if key is None or key in ['constant', 'mean', 'default']:
        return detrend(x, key=detrend_mean, axis=axis)
    elif key == 'linear':
        return detrend(x, key=detrend_linear, axis=axis)
    elif key == 'none':
        return detrend(x, key=detrend_none, axis=axis)
    elif callable(key):
        x = np.asarray(x)
        if axis is not None and axis + 1 > x.ndim:
            raise ValueError(f'axis(={axis}) out of bounds')
        if (axis is None and x.ndim == 0) or (not axis and x.ndim == 1):
            return key(x)
        # try to use the 'axis' argument if the function supports it,
        # otherwise use apply_along_axis to do it
        try:
            return key(x, axis=axis)
        except TypeError:
            return np.apply_along_axis(key, axis=axis, arr=x)
    else:
        raise ValueError(
            f"Unknown value for key: {key!r}, must be one of: 'default', "
            f"'constant', 'mean', 'linear', or a function")


def detrend_mean(x, axis=None):
    """
    Return x minus the mean(x).

    Parameters
    ----------
    x : array or sequence
        Array or sequence containing the data
        Can have any dimensionality

    axis : int
        The axis along which to take the mean.  See numpy.mean for a
        description of this argument.

    See Also
    --------
    detrend_linear : Another detrend algorithm.
    detrend_none : Another detrend algorithm.
    detrend : A wrapper around all the detrend algorithms.
    """
    x = np.asarray(x)

    if axis is not None and axis+1 > x.ndim:
        raise ValueError('axis(=%s) out of bounds' % axis)

    return x - x.mean(axis, keepdims=True)


def detrend_none(x, axis=None):
    """
    Return x: no detrending.

    Parameters
    ----------
    x : any object
        An object containing the data

    axis : int
        This parameter is ignored.
        It is included for compatibility with detrend_mean

    See Also
    --------
    detrend_mean : Another detrend algorithm.
    detrend_linear : Another detrend algorithm.
    detrend : A wrapper around all the detrend algorithms.
    """
    return x


def detrend_linear(y):
    """
    Return x minus best fit line; 'linear' detrending.

    Parameters
    ----------
    y : 0-D or 1-D array or sequence
        Array or sequence containing the data

    axis : int
        The axis along which to take the mean.  See numpy.mean for a
        description of this argument.

    See Also
    --------
    detrend_mean : Another detrend algorithm.
    detrend_none : Another detrend algorithm.
    detrend : A wrapper around all the detrend algorithms.
    """
    # This is faster than an algorithm based on linalg.lstsq.
    y = np.asarray(y)

    if y.ndim > 1:
        raise ValueError('y cannot have ndim > 1')

    # short-circuit 0-D array.
    if not y.ndim:
        return np.array(0., dtype=y.dtype)

    x = np.arange(y.size, dtype=float)

    C = np.cov(x, y, bias=1)
    b = C[0, 1]/C[0, 0]

    a = y.mean() - b*x.mean()
    return y - (b*x + a)


def stride_windows(x, n, noverlap=None, axis=0):
    """
    Get all windows of x with length n as a single array,
    using strides to avoid data duplication.

    .. warning::

        It is not safe to write to the output array.  Multiple
        elements may point to the same piece of memory,
        so modifying one value may change others.

    Parameters
    ----------
    x : 1D array or sequence
        Array or sequence containing the data.

    n : int
        The number of data points in each window.

    noverlap : int
        The overlap between adjacent windows.
        Default is 0 (no overlap)

    axis : int
        The axis along which the windows will run.

    References
    ----------
    `stackoverflow: Rolling window for 1D arrays in Numpy?
    <http://stackoverflow.com/a/6811241>`_
    `stackoverflow: Using strides for an efficient moving average filter
    <http://stackoverflow.com/a/4947453>`_
    """
    if noverlap is None:
        noverlap = 0

    if noverlap >= n:
        raise ValueError('noverlap must be less than n')
    if n < 1:
        raise ValueError('n cannot be less than 1')

    x = np.asarray(x)

    if x.ndim != 1:
        raise ValueError('only 1-dimensional arrays can be used')
    if n == 1 and noverlap == 0:
        if axis == 0:
            return x[np.newaxis]
        else:
            return x[np.newaxis].transpose()
    if n > x.size:
        raise ValueError('n cannot be greater than the length of x')

    # np.lib.stride_tricks.as_strided easily leads to memory corruption for
    # non integer shape and strides, i.e. noverlap or n. See #3845.
    noverlap = int(noverlap)
    n = int(n)

    step = n - noverlap
    if axis == 0:
        shape = (n, (x.shape[-1]-noverlap)//step)
        strides = (x.strides[0], step*x.strides[0])
    else:
        shape = ((x.shape[-1]-noverlap)//step, n)
        strides = (step*x.strides[0], x.strides[0])
    return np.lib.stride_tricks.as_strided(x, shape=shape, strides=strides)


@cbook.deprecated("3.2")
def stride_repeat(x, n, axis=0):
    """
    Repeat the values in an array in a memory-efficient manner.  Array x is
    stacked vertically n times.

    .. warning::

        It is not safe to write to the output array.  Multiple
        elements may point to the same piece of memory, so
        modifying one value may change others.

    Parameters
    ----------
    x : 1D array or sequence
        Array or sequence containing the data.

    n : int
        The number of time to repeat the array.

    axis : int
        The axis along which the data will run.

    References
    ----------
    `stackoverflow: Repeat NumPy array without replicating data?
    <http://stackoverflow.com/a/5568169>`_
    """
    if axis not in [0, 1]:
        raise ValueError('axis must be 0 or 1')
    x = np.asarray(x)
    if x.ndim != 1:
        raise ValueError('only 1-dimensional arrays can be used')

    if n == 1:
        if axis == 0:
            return np.atleast_2d(x)
        else:
            return np.atleast_2d(x).T
    if n < 1:
        raise ValueError('n cannot be less than 1')

    # np.lib.stride_tricks.as_strided easily leads to memory corruption for
    # non integer shape and strides, i.e. n. See #3845.
    n = int(n)

    if axis == 0:
        shape = (n, x.size)
        strides = (0, x.strides[0])
    else:
        shape = (x.size, n)
        strides = (x.strides[0], 0)

    return np.lib.stride_tricks.as_strided(x, shape=shape, strides=strides)


def _spectral_helper(x, y=None, NFFT=None, Fs=None, detrend_func=None,
                     window=None, noverlap=None, pad_to=None,
                     sides=None, scale_by_freq=None, mode=None):
    """
    Private helper implementing the common parts between the psd, csd,
    spectrogram and complex, magnitude, angle, and phase spectrums.
    """
    if y is None:
        # if y is None use x for y
        same_data = True
    else:
        # The checks for if y is x are so that we can use the same function to
        # implement the core of psd(), csd(), and spectrogram() without doing
        # extra calculations.  We return the unaveraged Pxy, freqs, and t.
        same_data = y is x

    if Fs is None:
        Fs = 2
    if noverlap is None:
        noverlap = 0
    if detrend_func is None:
        detrend_func = detrend_none
    if window is None:
        window = window_hanning

    # if NFFT is set to None use the whole signal
    if NFFT is None:
        NFFT = 256

    if mode is None or mode == 'default':
        mode = 'psd'
    cbook._check_in_list(
        ['default', 'psd', 'complex', 'magnitude', 'angle', 'phase'],
        mode=mode)

    if not same_data and mode != 'psd':
        raise ValueError("x and y must be equal if mode is not 'psd'")

    # Make sure we're dealing with a numpy array. If y and x were the same
    # object to start with, keep them that way
    x = np.asarray(x)
    if not same_data:
        y = np.asarray(y)

    if sides is None or sides == 'default':
        if np.iscomplexobj(x):
            sides = 'twosided'
        else:
            sides = 'onesided'
    cbook._check_in_list(['default', 'onesided', 'twosided'], sides=sides)

    # zero pad x and y up to NFFT if they are shorter than NFFT
    if len(x) < NFFT:
        n = len(x)
        x = np.resize(x, NFFT)
        x[n:] = 0

    if not same_data and len(y) < NFFT:
        n = len(y)
        y = np.resize(y, NFFT)
        y[n:] = 0

    if pad_to is None:
        pad_to = NFFT

    if mode != 'psd':
        scale_by_freq = False
    elif scale_by_freq is None:
        scale_by_freq = True

    # For real x, ignore the negative frequencies unless told otherwise
    if sides == 'twosided':
        numFreqs = pad_to
        if pad_to % 2:
            freqcenter = (pad_to - 1)//2 + 1
        else:
            freqcenter = pad_to//2
        scaling_factor = 1.
    elif sides == 'onesided':
        if pad_to % 2:
            numFreqs = (pad_to + 1)//2
        else:
            numFreqs = pad_to//2 + 1
        scaling_factor = 2.

    if not np.iterable(window):
        window = window(np.ones(NFFT, x.dtype))
    if len(window) != NFFT:
        raise ValueError(
            "The window length must match the data's first dimension")

    result = stride_windows(x, NFFT, noverlap, axis=0)
    result = detrend(result, detrend_func, axis=0)
    result = result * window.reshape((-1, 1))
    result = np.fft.fft(result, n=pad_to, axis=0)[:numFreqs, :]
    freqs = np.fft.fftfreq(pad_to, 1/Fs)[:numFreqs]

    if not same_data:
        # if same_data is False, mode must be 'psd'
        resultY = stride_windows(y, NFFT, noverlap)
        resultY = detrend(resultY, detrend_func, axis=0)
        resultY = resultY * window.reshape((-1, 1))
        resultY = np.fft.fft(resultY, n=pad_to, axis=0)[:numFreqs, :]
        result = np.conj(result) * resultY
    elif mode == 'psd':
        result = np.conj(result) * result
    elif mode == 'magnitude':
        result = np.abs(result) / np.abs(window).sum()
    elif mode == 'angle' or mode == 'phase':
        # we unwrap the phase later to handle the onesided vs. twosided case
        result = np.angle(result)
    elif mode == 'complex':
        result /= np.abs(window).sum()

    if mode == 'psd':

        # Also include scaling factors for one-sided densities and dividing by
        # the sampling frequency, if desired. Scale everything, except the DC
        # component and the NFFT/2 component:

        # if we have a even number of frequencies, don't scale NFFT/2
        if not NFFT % 2:
            slc = slice(1, -1, None)
        # if we have an odd number, just don't scale DC
        else:
            slc = slice(1, None, None)

        result[slc] *= scaling_factor

        # MATLAB divides by the sampling frequency so that density function
        # has units of dB/Hz and can be integrated by the plotted frequency
        # values. Perform the same scaling here.
        if scale_by_freq:
            result /= Fs
            # Scale the spectrum by the norm of the window to compensate for
            # windowing loss; see Bendat & Piersol Sec 11.5.2.
            result /= (np.abs(window)**2).sum()
        else:
            # In this case, preserve power in the segment, not amplitude
            result /= np.abs(window).sum()**2

    t = np.arange(NFFT/2, len(x) - NFFT/2 + 1, NFFT - noverlap)/Fs

    if sides == 'twosided':
        # center the frequency range at zero
        freqs = np.roll(freqs, -freqcenter, axis=0)
        result = np.roll(result, -freqcenter, axis=0)
    elif not pad_to % 2:
        # get the last value correctly, it is negative otherwise
        freqs[-1] *= -1

    # we unwrap the phase here to handle the onesided vs. twosided case
    if mode == 'phase':
        result = np.unwrap(result, axis=0)

    return result, freqs, t


def _single_spectrum_helper(
        mode, x, Fs=None, window=None, pad_to=None, sides=None):
    """
    Private helper implementing the commonality between the complex, magnitude,
    angle, and phase spectrums.
    """
    cbook._check_in_list(['complex', 'magnitude', 'angle', 'phase'], mode=mode)

    if pad_to is None:
        pad_to = len(x)

    spec, freqs, _ = _spectral_helper(x=x, y=None, NFFT=len(x), Fs=Fs,
                                      detrend_func=detrend_none, window=window,
                                      noverlap=0, pad_to=pad_to,
                                      sides=sides,
                                      scale_by_freq=False,
                                      mode=mode)
    if mode != 'complex':
        spec = spec.real

    if spec.ndim == 2 and spec.shape[1] == 1:
        spec = spec[:, 0]

    return spec, freqs


# Split out these keyword docs so that they can be used elsewhere
docstring.interpd.update(
    Spectral="""\
Fs : float, default: 2
    The sampling frequency (samples per time unit).  It is used to calculate
    the Fourier frequencies, *freqs*, in cycles per time unit.

window : callable or ndarray, default: `.window_hanning`
    A function or a vector of length *NFFT*.  To create window vectors see
    `.window_hanning`, `.window_none`, `numpy.blackman`, `numpy.hamming`,
    `numpy.bartlett`, `scipy.signal`, `scipy.signal.get_window`, etc.  If a
    function is passed as the argument, it must take a data segment as an
    argument and return the windowed version of the segment.

sides : {'default', 'onesided', 'twosided'}, optional
    Which sides of the spectrum to return. 'default' is one-sided for real
    data and two-sided for complex data. 'onesided' forces the return of a
    one-sided spectrum, while 'twosided' forces two-sided.""",

    Single_Spectrum="""\
pad_to : int, optional
    The number of points to which the data segment is padded when performing
    the FFT.  While not increasing the actual resolution of the spectrum (the
    minimum distance between resolvable peaks), this can give more points in
    the plot, allowing for more detail. This corresponds to the *n* parameter
    in the call to fft().  The default is None, which sets *pad_to* equal to
    the length of the input signal (i.e. no padding).""",

    PSD="""\
pad_to : int, optional
    The number of points to which the data segment is padded when performing
    the FFT.  This can be different from *NFFT*, which specifies the number
    of data points used.  While not increasing the actual resolution of the
    spectrum (the minimum distance between resolvable peaks), this can give
    more points in the plot, allowing for more detail. This corresponds to
    the *n* parameter in the call to fft(). The default is None, which sets
    *pad_to* equal to *NFFT*

NFFT : int, default: 256
    The number of data points used in each block for the FFT.  A power 2 is
    most efficient.  This should *NOT* be used to get zero padding, or the
    scaling of the result will be incorrect; use *pad_to* for this instead.

detrend : {'none', 'mean', 'linear'} or callable, default 'none'
    The function applied to each segment before fft-ing, designed to remove
    the mean or linear trend.  Unlike in MATLAB, where the *detrend* parameter
    is a vector, in Matplotlib is it a function.  The :mod:`~matplotlib.mlab`
    module defines `.detrend_none`, `.detrend_mean`, and `.detrend_linear`,
    but you can use a custom function as well.  You can also use a string to
    choose one of the functions: 'none' calls `.detrend_none`. 'mean' calls
    `.detrend_mean`. 'linear' calls `.detrend_linear`.

scale_by_freq : bool, default: True
    Whether the resulting density values should be scaled by the scaling
    frequency, which gives density in units of Hz^-1.  This allows for
    integration over the returned frequency values.  The default is True for
    MATLAB compatibility.""")


@docstring.dedent_interpd
def psd(x, NFFT=None, Fs=None, detrend=None, window=None,
        noverlap=None, pad_to=None, sides=None, scale_by_freq=None):
    r"""
    Compute the power spectral density.

    The power spectral density :math:`P_{xx}` by Welch's average
    periodogram method.  The vector *x* is divided into *NFFT* length
    segments.  Each segment is detrended by function *detrend* and
    windowed by function *window*.  *noverlap* gives the length of
    the overlap between segments.  The :math:`|\mathrm{fft}(i)|^2`
    of each segment :math:`i` are averaged to compute :math:`P_{xx}`.

    If len(*x*) < *NFFT*, it will be zero padded to *NFFT*.

    Parameters
    ----------
    x : 1-D array or sequence
        Array or sequence containing the data

    %(Spectral)s

    %(PSD)s

    noverlap : int
        The number of points of overlap between segments.
        The default value is 0 (no overlap).

    Returns
    -------
    Pxx : 1-D array
        The values for the power spectrum :math:`P_{xx}` (real valued)

    freqs : 1-D array
        The frequencies corresponding to the elements in *Pxx*

    References
    ----------
    Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John
    Wiley & Sons (1986)

    See Also
    --------
    specgram
        `specgram` differs in the default overlap; in not returning the mean of
        the segment periodograms; and in returning the times of the segments.

    magnitude_spectrum : returns the magnitude spectrum.

    csd : returns the spectral density between two signals.
    """
    Pxx, freqs = csd(x=x, y=None, NFFT=NFFT, Fs=Fs, detrend=detrend,
                     window=window, noverlap=noverlap, pad_to=pad_to,
                     sides=sides, scale_by_freq=scale_by_freq)
    return Pxx.real, freqs


@docstring.dedent_interpd
def csd(x, y, NFFT=None, Fs=None, detrend=None, window=None,
        noverlap=None, pad_to=None, sides=None, scale_by_freq=None):
    """
    Compute the cross-spectral density.

    The cross spectral density :math:`P_{xy}` by Welch's average
    periodogram method.  The vectors *x* and *y* are divided into
    *NFFT* length segments.  Each segment is detrended by function
    *detrend* and windowed by function *window*.  *noverlap* gives
    the length of the overlap between segments.  The product of
    the direct FFTs of *x* and *y* are averaged over each segment
    to compute :math:`P_{xy}`, with a scaling to correct for power
    loss due to windowing.

    If len(*x*) < *NFFT* or len(*y*) < *NFFT*, they will be zero
    padded to *NFFT*.

    Parameters
    ----------
    x, y : 1-D arrays or sequences
        Arrays or sequences containing the data

    %(Spectral)s

    %(PSD)s

    noverlap : int
        The number of points of overlap between segments.
        The default value is 0 (no overlap).

    Returns
    -------
    Pxy : 1-D array
        The values for the cross spectrum :math:`P_{xy}` before scaling (real
        valued)

    freqs : 1-D array
        The frequencies corresponding to the elements in *Pxy*

    References
    ----------
    Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John
    Wiley & Sons (1986)

    See Also
    --------
    psd : equivalent to setting ``y = x``.
    """
    if NFFT is None:
        NFFT = 256
    Pxy, freqs, _ = _spectral_helper(x=x, y=y, NFFT=NFFT, Fs=Fs,
                                     detrend_func=detrend, window=window,
                                     noverlap=noverlap, pad_to=pad_to,
                                     sides=sides, scale_by_freq=scale_by_freq,
                                     mode='psd')

    if Pxy.ndim == 2:
        if Pxy.shape[1] > 1:
            Pxy = Pxy.mean(axis=1)
        else:
            Pxy = Pxy[:, 0]
    return Pxy, freqs


_single_spectrum_docs = """\
Compute the {quantity} of *x*.
Data is padded to a length of *pad_to* and the windowing function *window* is
applied to the signal.

Parameters
----------
x : 1-D array or sequence
    Array or sequence containing the data

{Spectral}

{Single_Spectrum}

Returns
-------
spectrum : 1-D array
    The {quantity}.
freqs : 1-D array
    The frequencies corresponding to the elements in *spectrum*.

See Also
--------
psd
    Returns the power spectral density.
complex_spectrum
    Returns the complex-valued frequency spectrum.
magnitude_spectrum
    Returns the absolute value of the `complex_spectrum`.
angle_spectrum
    Returns the angle of the `complex_spectrum`.
phase_spectrum
    Returns the phase (unwrapped angle) of the `complex_spectrum`.
specgram
    Can return the complex spectrum of segments within the signal.
"""


complex_spectrum = functools.partial(_single_spectrum_helper, "complex")
complex_spectrum.__doc__ = _single_spectrum_docs.format(
    quantity="complex-valued frequency spectrum",
    **docstring.interpd.params)
magnitude_spectrum = functools.partial(_single_spectrum_helper, "magnitude")
magnitude_spectrum.__doc__ = _single_spectrum_docs.format(
    quantity="magnitude (absolute value) of the frequency spectrum",
    **docstring.interpd.params)
angle_spectrum = functools.partial(_single_spectrum_helper, "angle")
angle_spectrum.__doc__ = _single_spectrum_docs.format(
    quantity="angle of the frequency spectrum (wrapped phase spectrum)",
    **docstring.interpd.params)
phase_spectrum = functools.partial(_single_spectrum_helper, "phase")
phase_spectrum.__doc__ = _single_spectrum_docs.format(
    quantity="phase of the frequency spectrum (unwrapped phase spectrum)",
    **docstring.interpd.params)


@docstring.dedent_interpd
def specgram(x, NFFT=None, Fs=None, detrend=None, window=None,
             noverlap=None, pad_to=None, sides=None, scale_by_freq=None,
             mode=None):
    """
    Compute a spectrogram.

    Compute and plot a spectrogram of data in x.  Data are split into
    NFFT length segments and the spectrum of each section is
    computed.  The windowing function window is applied to each
    segment, and the amount of overlap of each segment is
    specified with noverlap.

    Parameters
    ----------
    x : array-like
        1-D array or sequence.

    %(Spectral)s

    %(PSD)s

    noverlap : int, optional
        The number of points of overlap between blocks.  The default
        value is 128.
    mode : str, default: 'psd'
        What sort of spectrum to use:
            'psd'
                Returns the power spectral density.
            'complex'
                Returns the complex-valued frequency spectrum.
            'magnitude'
                Returns the magnitude spectrum.
            'angle'
                Returns the phase spectrum without unwrapping.
            'phase'
                Returns the phase spectrum with unwrapping.

    Returns
    -------
    spectrum : array-like
        2-D array, columns are the periodograms of successive segments.

    freqs : array-like
        1-D array, frequencies corresponding to the rows in *spectrum*.

    t : array-like
        1-D array, the times corresponding to midpoints of segments
        (i.e the columns in *spectrum*).

    See Also
    --------
    psd : differs in the overlap and in the return values.
    complex_spectrum : similar, but with complex valued frequencies.
    magnitude_spectrum : similar single segment when mode is 'magnitude'.
    angle_spectrum : similar to single segment when mode is 'angle'.
    phase_spectrum : similar to single segment when mode is 'phase'.

    Notes
    -----
    detrend and scale_by_freq only apply when *mode* is set to 'psd'.

    """
    if noverlap is None:
        noverlap = 128  # default in _spectral_helper() is noverlap = 0
    if NFFT is None:
        NFFT = 256  # same default as in _spectral_helper()
    if len(x) <= NFFT:
        cbook._warn_external("Only one segment is calculated since parameter "
                             "NFFT (=%d) >= signal length (=%d)." %
                             (NFFT, len(x)))

    spec, freqs, t = _spectral_helper(x=x, y=None, NFFT=NFFT, Fs=Fs,
                                      detrend_func=detrend, window=window,
                                      noverlap=noverlap, pad_to=pad_to,
                                      sides=sides,
                                      scale_by_freq=scale_by_freq,
                                      mode=mode)

    if mode != 'complex':
        spec = spec.real  # Needed since helper implements generically

    return spec, freqs, t


@docstring.dedent_interpd
def cohere(x, y, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning,
           noverlap=0, pad_to=None, sides='default', scale_by_freq=None):
    r"""
    The coherence between *x* and *y*.  Coherence is the normalized
    cross spectral density:

    .. math::

        C_{xy} = \frac{|P_{xy}|^2}{P_{xx}P_{yy}}

    Parameters
    ----------
    x, y
        Array or sequence containing the data

    %(Spectral)s

    %(PSD)s

    noverlap : int
        The number of points of overlap between blocks.  The default value
        is 0 (no overlap).

    Returns
    -------
    The return value is the tuple (*Cxy*, *f*), where *f* are the
    frequencies of the coherence vector. For cohere, scaling the
    individual densities by the sampling frequency has no effect,
    since the factors cancel out.

    See Also
    --------
    :func:`psd`, :func:`csd` :
        For information about the methods used to compute :math:`P_{xy}`,
        :math:`P_{xx}` and :math:`P_{yy}`.
    """
    if len(x) < 2 * NFFT:
        raise ValueError(
            "Coherence is calculated by averaging over *NFFT* length "
            "segments.  Your signal is too short for your choice of *NFFT*.")
    Pxx, f = psd(x, NFFT, Fs, detrend, window, noverlap, pad_to, sides,
                 scale_by_freq)
    Pyy, f = psd(y, NFFT, Fs, detrend, window, noverlap, pad_to, sides,
                 scale_by_freq)
    Pxy, f = csd(x, y, NFFT, Fs, detrend, window, noverlap, pad_to, sides,
                 scale_by_freq)
    Cxy = np.abs(Pxy) ** 2 / (Pxx * Pyy)
    return Cxy, f


class GaussianKDE:
    """
    Representation of a kernel-density estimate using Gaussian kernels.

    Parameters
    ----------
    dataset : array-like
        Datapoints to estimate from. In case of univariate data this is a 1-D
        array, otherwise a 2-D array with shape (# of dims, # of data).

    bw_method : str, scalar or callable, optional
        The method used to calculate the estimator bandwidth.  This can be
        'scott', 'silverman', a scalar constant or a callable.  If a
        scalar, this will be used directly as `kde.factor`.  If a
        callable, it should take a `GaussianKDE` instance as only
        parameter and return a scalar. If None (default), 'scott' is used.

    Attributes
    ----------
    dataset : ndarray
        The dataset with which `gaussian_kde` was initialized.

    dim : int
        Number of dimensions.

    num_dp : int
        Number of datapoints.

    factor : float
        The bandwidth factor, obtained from `kde.covariance_factor`, with which
        the covariance matrix is multiplied.

    covariance : ndarray
        The covariance matrix of *dataset*, scaled by the calculated bandwidth
        (`kde.factor`).

    inv_cov : ndarray
        The inverse of *covariance*.

    Methods
    -------
    kde.evaluate(points) : ndarray
        Evaluate the estimated pdf on a provided set of points.

    kde(points) : ndarray
        Same as kde.evaluate(points)

    """

    # This implementation with minor modification was too good to pass up.
    # from scipy: https://github.com/scipy/scipy/blob/master/scipy/stats/kde.py

    def __init__(self, dataset, bw_method=None):
        self.dataset = np.atleast_2d(dataset)
        if not np.array(self.dataset).size > 1:
            raise ValueError("`dataset` input should have multiple elements.")

        self.dim, self.num_dp = np.array(self.dataset).shape

        if bw_method is None:
            pass
        elif cbook._str_equal(bw_method, 'scott'):
            self.covariance_factor = self.scotts_factor
        elif cbook._str_equal(bw_method, 'silverman'):
            self.covariance_factor = self.silverman_factor
        elif isinstance(bw_method, Number):
            self._bw_method = 'use constant'
            self.covariance_factor = lambda: bw_method
        elif callable(bw_method):
            self._bw_method = bw_method
            self.covariance_factor = lambda: self._bw_method(self)
        else:
            raise ValueError("`bw_method` should be 'scott', 'silverman', a "
                             "scalar or a callable")

        # Computes the covariance matrix for each Gaussian kernel using
        # covariance_factor().

        self.factor = self.covariance_factor()
        # Cache covariance and inverse covariance of the data
        if not hasattr(self, '_data_inv_cov'):
            self.data_covariance = np.atleast_2d(
                np.cov(
                    self.dataset,
                    rowvar=1,
                    bias=False))
            self.data_inv_cov = np.linalg.inv(self.data_covariance)

        self.covariance = self.data_covariance * self.factor ** 2
        self.inv_cov = self.data_inv_cov / self.factor ** 2
        self.norm_factor = (np.sqrt(np.linalg.det(2 * np.pi * self.covariance))
                            * self.num_dp)

    def scotts_factor(self):
        return np.power(self.num_dp, -1. / (self.dim + 4))

    def silverman_factor(self):
        return np.power(
            self.num_dp * (self.dim + 2.0) / 4.0, -1. / (self.dim + 4))

    #  Default method to calculate bandwidth, can be overwritten by subclass
    covariance_factor = scotts_factor

    def evaluate(self, points):
        """
        Evaluate the estimated pdf on a set of points.

        Parameters
        ----------
        points : (# of dimensions, # of points)-array
            Alternatively, a (# of dimensions,) vector can be passed in and
            treated as a single point.

        Returns
        -------
        (# of points,)-array
            The values at each point.

        Raises
        ------
        ValueError : if the dimensionality of the input points is different
                     than the dimensionality of the KDE.

        """
        points = np.atleast_2d(points)

        dim, num_m = np.array(points).shape
        if dim != self.dim:
            raise ValueError("points have dimension {}, dataset has dimension "
                             "{}".format(dim, self.dim))

        result = np.zeros(num_m)

        if num_m >= self.num_dp:
            # there are more points than data, so loop over data
            for i in range(self.num_dp):
                diff = self.dataset[:, i, np.newaxis] - points
                tdiff = np.dot(self.inv_cov, diff)
                energy = np.sum(diff * tdiff, axis=0) / 2.0
                result = result + np.exp(-energy)
        else:
            # loop over points
            for i in range(num_m):
                diff = self.dataset - points[:, i, np.newaxis]
                tdiff = np.dot(self.inv_cov, diff)
                energy = np.sum(diff * tdiff, axis=0) / 2.0
                result[i] = np.sum(np.exp(-energy), axis=0)

        result = result / self.norm_factor

        return result

    __call__ = evaluate