__init__.py
75.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
"""
A collection of utility functions and classes. Originally, many
(but not all) were from the Python Cookbook -- hence the name cbook.
This module is safe to import from anywhere within Matplotlib;
it imports Matplotlib only at runtime.
"""
import collections
import collections.abc
import contextlib
import functools
import gzip
import itertools
import operator
import os
from pathlib import Path
import re
import shlex
import subprocess
import sys
import time
import traceback
import types
import warnings
import weakref
import numpy as np
import matplotlib
from .deprecation import (
deprecated, warn_deprecated,
_rename_parameter, _delete_parameter, _make_keyword_only,
_deprecate_method_override, _deprecate_privatize_attribute,
_suppress_matplotlib_deprecation_warning,
MatplotlibDeprecationWarning, mplDeprecation)
def _get_running_interactive_framework():
"""
Return the interactive framework whose event loop is currently running, if
any, or "headless" if no event loop can be started, or None.
Returns
-------
Optional[str]
One of the following values: "qt5", "qt4", "gtk3", "wx", "tk",
"macosx", "headless", ``None``.
"""
QtWidgets = (sys.modules.get("PyQt5.QtWidgets")
or sys.modules.get("PySide2.QtWidgets"))
if QtWidgets and QtWidgets.QApplication.instance():
return "qt5"
QtGui = (sys.modules.get("PyQt4.QtGui")
or sys.modules.get("PySide.QtGui"))
if QtGui and QtGui.QApplication.instance():
return "qt4"
Gtk = sys.modules.get("gi.repository.Gtk")
if Gtk and Gtk.main_level():
return "gtk3"
wx = sys.modules.get("wx")
if wx and wx.GetApp():
return "wx"
tkinter = sys.modules.get("tkinter")
if tkinter:
for frame in sys._current_frames().values():
while frame:
if frame.f_code == tkinter.mainloop.__code__:
return "tk"
frame = frame.f_back
if 'matplotlib.backends._macosx' in sys.modules:
if sys.modules["matplotlib.backends._macosx"].event_loop_is_running():
return "macosx"
if sys.platform.startswith("linux") and not os.environ.get("DISPLAY"):
return "headless"
return None
def _exception_printer(exc):
if _get_running_interactive_framework() in ["headless", None]:
raise exc
else:
traceback.print_exc()
class _StrongRef:
"""
Wrapper similar to a weakref, but keeping a strong reference to the object.
"""
def __init__(self, obj):
self._obj = obj
def __call__(self):
return self._obj
def __eq__(self, other):
return isinstance(other, _StrongRef) and self._obj == other._obj
def __hash__(self):
return hash(self._obj)
class CallbackRegistry:
"""
Handle registering and disconnecting for a set of signals and callbacks:
>>> def oneat(x):
... print('eat', x)
>>> def ondrink(x):
... print('drink', x)
>>> from matplotlib.cbook import CallbackRegistry
>>> callbacks = CallbackRegistry()
>>> id_eat = callbacks.connect('eat', oneat)
>>> id_drink = callbacks.connect('drink', ondrink)
>>> callbacks.process('drink', 123)
drink 123
>>> callbacks.process('eat', 456)
eat 456
>>> callbacks.process('be merry', 456) # nothing will be called
>>> callbacks.disconnect(id_eat)
>>> callbacks.process('eat', 456) # nothing will be called
In practice, one should always disconnect all callbacks when they are
no longer needed to avoid dangling references (and thus memory leaks).
However, real code in Matplotlib rarely does so, and due to its design,
it is rather difficult to place this kind of code. To get around this,
and prevent this class of memory leaks, we instead store weak references
to bound methods only, so when the destination object needs to die, the
CallbackRegistry won't keep it alive.
Parameters
----------
exception_handler : callable, optional
If provided must have signature ::
def handler(exc: Exception) -> None:
If not None this function will be called with any `Exception`
subclass raised by the callbacks in `CallbackRegistry.process`.
The handler may either consume the exception or re-raise.
The callable must be pickle-able.
The default handler is ::
def h(exc):
traceback.print_exc()
"""
# We maintain two mappings:
# callbacks: signal -> {cid -> weakref-to-callback}
# _func_cid_map: signal -> {weakref-to-callback -> cid}
def __init__(self, exception_handler=_exception_printer):
self.exception_handler = exception_handler
self.callbacks = {}
self._cid_gen = itertools.count()
self._func_cid_map = {}
def __getstate__(self):
# In general, callbacks may not be pickled, so we just drop them.
return {**vars(self), "callbacks": {}, "_func_cid_map": {}}
def connect(self, s, func):
"""Register *func* to be called when signal *s* is generated."""
self._func_cid_map.setdefault(s, {})
try:
proxy = weakref.WeakMethod(func, self._remove_proxy)
except TypeError:
proxy = _StrongRef(func)
if proxy in self._func_cid_map[s]:
return self._func_cid_map[s][proxy]
cid = next(self._cid_gen)
self._func_cid_map[s][proxy] = cid
self.callbacks.setdefault(s, {})
self.callbacks[s][cid] = proxy
return cid
# Keep a reference to sys.is_finalizing, as sys may have been cleared out
# at that point.
def _remove_proxy(self, proxy, *, _is_finalizing=sys.is_finalizing):
if _is_finalizing():
# Weakrefs can't be properly torn down at that point anymore.
return
for signal, proxies in list(self._func_cid_map.items()):
try:
del self.callbacks[signal][proxies[proxy]]
except KeyError:
pass
if len(self.callbacks[signal]) == 0:
del self.callbacks[signal]
del self._func_cid_map[signal]
def disconnect(self, cid):
"""Disconnect the callback registered with callback id *cid*."""
for eventname, callbackd in list(self.callbacks.items()):
try:
del callbackd[cid]
except KeyError:
continue
else:
for signal, functions in list(self._func_cid_map.items()):
for function, value in list(functions.items()):
if value == cid:
del functions[function]
return
def process(self, s, *args, **kwargs):
"""
Process signal *s*.
All of the functions registered to receive callbacks on *s* will be
called with ``*args`` and ``**kwargs``.
"""
for cid, ref in list(self.callbacks.get(s, {}).items()):
func = ref()
if func is not None:
try:
func(*args, **kwargs)
# this does not capture KeyboardInterrupt, SystemExit,
# and GeneratorExit
except Exception as exc:
if self.exception_handler is not None:
self.exception_handler(exc)
else:
raise
class silent_list(list):
"""
A list with a short ``repr()``.
This is meant to be used for a homogeneous list of artists, so that they
don't cause long, meaningless output.
Instead of ::
[<matplotlib.lines.Line2D object at 0x7f5749fed3c8>,
<matplotlib.lines.Line2D object at 0x7f5749fed4e0>,
<matplotlib.lines.Line2D object at 0x7f5758016550>]
one will get ::
<a list of 3 Line2D objects>
"""
def __init__(self, type, seq=None):
self.type = type
if seq is not None:
self.extend(seq)
def __repr__(self):
return '<a list of %d %s objects>' % (len(self), self.type)
@deprecated("3.3")
class IgnoredKeywordWarning(UserWarning):
"""
A class for issuing warnings about keyword arguments that will be ignored
by Matplotlib.
"""
pass
@deprecated("3.3", alternative="normalize_kwargs")
def local_over_kwdict(local_var, kwargs, *keys):
"""
Enforces the priority of a local variable over potentially conflicting
argument(s) from a kwargs dict. The following possible output values are
considered in order of priority::
local_var > kwargs[keys[0]] > ... > kwargs[keys[-1]]
The first of these whose value is not None will be returned. If all are
None then None will be returned. Each key in keys will be removed from the
kwargs dict in place.
Parameters
----------
local_var : any object
The local variable (highest priority).
kwargs : dict
Dictionary of keyword arguments; modified in place.
keys : str(s)
Name(s) of keyword arguments to process, in descending order of
priority.
Returns
-------
any object
Either local_var or one of kwargs[key] for key in keys.
Raises
------
IgnoredKeywordWarning
For each key in keys that is removed from kwargs but not used as
the output value.
"""
return _local_over_kwdict(local_var, kwargs, *keys, IgnoredKeywordWarning)
def _local_over_kwdict(
local_var, kwargs, *keys, warning_cls=MatplotlibDeprecationWarning):
out = local_var
for key in keys:
kwarg_val = kwargs.pop(key, None)
if kwarg_val is not None:
if out is None:
out = kwarg_val
else:
_warn_external('"%s" keyword argument will be ignored' % key,
warning_cls)
return out
def strip_math(s):
"""
Remove latex formatting from mathtext.
Only handles fully math and fully non-math strings.
"""
if len(s) >= 2 and s[0] == s[-1] == "$":
s = s[1:-1]
for tex, plain in [
(r"\times", "x"), # Specifically for Formatter support.
(r"\mathdefault", ""),
(r"\rm", ""),
(r"\cal", ""),
(r"\tt", ""),
(r"\it", ""),
("\\", ""),
("{", ""),
("}", ""),
]:
s = s.replace(tex, plain)
return s
def is_writable_file_like(obj):
"""Return whether *obj* looks like a file object with a *write* method."""
return callable(getattr(obj, 'write', None))
def file_requires_unicode(x):
"""
Return whether the given writable file-like object requires Unicode to be
written to it.
"""
try:
x.write(b'')
except TypeError:
return True
else:
return False
def to_filehandle(fname, flag='r', return_opened=False, encoding=None):
"""
Convert a path to an open file handle or pass-through a file-like object.
Consider using `open_file_cm` instead, as it allows one to properly close
newly created file objects more easily.
Parameters
----------
fname : str or path-like or file-like
If `str` or `os.PathLike`, the file is opened using the flags specified
by *flag* and *encoding*. If a file-like object, it is passed through.
flag : str, default 'r'
Passed as the *mode* argument to `open` when *fname* is `str` or
`os.PathLike`; ignored if *fname* is file-like.
return_opened : bool, default False
If True, return both the file object and a boolean indicating whether
this was a new file (that the caller needs to close). If False, return
only the new file.
encoding : str or None, default None
Passed as the *mode* argument to `open` when *fname* is `str` or
`os.PathLike`; ignored if *fname* is file-like.
Returns
-------
fh : file-like
opened : bool
*opened* is only returned if *return_opened* is True.
"""
if isinstance(fname, os.PathLike):
fname = os.fspath(fname)
if "U" in flag:
warn_deprecated("3.3", message="Passing a flag containing 'U' to "
"to_filehandle() is deprecated since %(since)s and "
"will be removed %(removal)s.")
flag = flag.replace("U", "")
if isinstance(fname, str):
if fname.endswith('.gz'):
fh = gzip.open(fname, flag)
elif fname.endswith('.bz2'):
# python may not be complied with bz2 support,
# bury import until we need it
import bz2
fh = bz2.BZ2File(fname, flag)
else:
fh = open(fname, flag, encoding=encoding)
opened = True
elif hasattr(fname, 'seek'):
fh = fname
opened = False
else:
raise ValueError('fname must be a PathLike or file handle')
if return_opened:
return fh, opened
return fh
@contextlib.contextmanager
def open_file_cm(path_or_file, mode="r", encoding=None):
r"""Pass through file objects and context-manage path-likes."""
fh, opened = to_filehandle(path_or_file, mode, True, encoding)
if opened:
with fh:
yield fh
else:
yield fh
def is_scalar_or_string(val):
"""Return whether the given object is a scalar or string like."""
return isinstance(val, str) or not np.iterable(val)
def get_sample_data(fname, asfileobj=True, *, np_load=False):
"""
Return a sample data file. *fname* is a path relative to the
:file:`mpl-data/sample_data` directory. If *asfileobj* is `True`
return a file object, otherwise just a file path.
Sample data files are stored in the 'mpl-data/sample_data' directory within
the Matplotlib package.
If the filename ends in .gz, the file is implicitly ungzipped. If the
filename ends with .npy or .npz, *asfileobj* is True, and *np_load* is
True, the file is loaded with `numpy.load`. *np_load* currently defaults
to False but will default to True in a future release.
"""
path = _get_data_path('sample_data', fname)
if asfileobj:
suffix = path.suffix.lower()
if suffix == '.gz':
return gzip.open(path)
elif suffix in ['.npy', '.npz']:
if np_load:
return np.load(path)
else:
warn_deprecated(
"3.3", message="In a future release, get_sample_data "
"will automatically load numpy arrays. Set np_load to "
"True to get the array and suppress this warning. Set "
"asfileobj to False to get the path to the data file and "
"suppress this warning.")
return path.open('rb')
elif suffix in ['.csv', '.xrc', '.txt']:
return path.open('r')
else:
return path.open('rb')
else:
return str(path)
def _get_data_path(*args):
"""
Return the `Path` to a resource file provided by Matplotlib.
``*args`` specify a path relative to the base data path.
"""
return Path(matplotlib.get_data_path(), *args)
def flatten(seq, scalarp=is_scalar_or_string):
"""
Return a generator of flattened nested containers.
For example:
>>> from matplotlib.cbook import flatten
>>> l = (('John', ['Hunter']), (1, 23), [[([42, (5, 23)], )]])
>>> print(list(flatten(l)))
['John', 'Hunter', 1, 23, 42, 5, 23]
By: Composite of Holger Krekel and Luther Blissett
From: https://code.activestate.com/recipes/121294/
and Recipe 1.12 in cookbook
"""
for item in seq:
if scalarp(item) or item is None:
yield item
else:
yield from flatten(item, scalarp)
@deprecated("3.3", alternative="os.path.realpath and os.stat")
@functools.lru_cache()
def get_realpath_and_stat(path):
realpath = os.path.realpath(path)
stat = os.stat(realpath)
stat_key = (stat.st_ino, stat.st_dev)
return realpath, stat_key
# A regular expression used to determine the amount of space to
# remove. It looks for the first sequence of spaces immediately
# following the first newline, or at the beginning of the string.
_find_dedent_regex = re.compile(r"(?:(?:\n\r?)|^)( *)\S")
# A cache to hold the regexs that actually remove the indent.
_dedent_regex = {}
class maxdict(dict):
"""
A dictionary with a maximum size.
Notes
-----
This doesn't override all the relevant methods to constrain the size,
just ``__setitem__``, so use with caution.
"""
def __init__(self, maxsize):
dict.__init__(self)
self.maxsize = maxsize
self._killkeys = []
def __setitem__(self, k, v):
if k not in self:
if len(self) >= self.maxsize:
del self[self._killkeys[0]]
del self._killkeys[0]
self._killkeys.append(k)
dict.__setitem__(self, k, v)
class Stack:
"""
Stack of elements with a movable cursor.
Mimics home/back/forward in a web browser.
"""
def __init__(self, default=None):
self.clear()
self._default = default
def __call__(self):
"""Return the current element, or None."""
if not self._elements:
return self._default
else:
return self._elements[self._pos]
def __len__(self):
return len(self._elements)
def __getitem__(self, ind):
return self._elements[ind]
def forward(self):
"""Move the position forward and return the current element."""
self._pos = min(self._pos + 1, len(self._elements) - 1)
return self()
def back(self):
"""Move the position back and return the current element."""
if self._pos > 0:
self._pos -= 1
return self()
def push(self, o):
"""
Push *o* to the stack at current position. Discard all later elements.
*o* is returned.
"""
self._elements = self._elements[:self._pos + 1] + [o]
self._pos = len(self._elements) - 1
return self()
def home(self):
"""
Push the first element onto the top of the stack.
The first element is returned.
"""
if not self._elements:
return
self.push(self._elements[0])
return self()
def empty(self):
"""Return whether the stack is empty."""
return len(self._elements) == 0
def clear(self):
"""Empty the stack."""
self._pos = -1
self._elements = []
def bubble(self, o):
"""
Raise all references of *o* to the top of the stack, and return it.
Raises
------
ValueError
If *o* is not in the stack.
"""
if o not in self._elements:
raise ValueError('Given element not contained in the stack')
old_elements = self._elements.copy()
self.clear()
top_elements = []
for elem in old_elements:
if elem == o:
top_elements.append(elem)
else:
self.push(elem)
for _ in top_elements:
self.push(o)
return o
def remove(self, o):
"""
Remove *o* from the stack.
Raises
------
ValueError
If *o* is not in the stack.
"""
if o not in self._elements:
raise ValueError('Given element not contained in the stack')
old_elements = self._elements.copy()
self.clear()
for elem in old_elements:
if elem != o:
self.push(elem)
def report_memory(i=0): # argument may go away
"""Return the memory consumed by the process."""
def call(command, os_name):
try:
return subprocess.check_output(command)
except subprocess.CalledProcessError as err:
raise NotImplementedError(
"report_memory works on %s only if "
"the '%s' program is found" % (os_name, command[0])
) from err
pid = os.getpid()
if sys.platform == 'sunos5':
lines = call(['ps', '-p', '%d' % pid, '-o', 'osz'], 'Sun OS')
mem = int(lines[-1].strip())
elif sys.platform == 'linux':
lines = call(['ps', '-p', '%d' % pid, '-o', 'rss,sz'], 'Linux')
mem = int(lines[1].split()[1])
elif sys.platform == 'darwin':
lines = call(['ps', '-p', '%d' % pid, '-o', 'rss,vsz'], 'Mac OS')
mem = int(lines[1].split()[0])
elif sys.platform == 'win32':
lines = call(["tasklist", "/nh", "/fi", "pid eq %d" % pid], 'Windows')
mem = int(lines.strip().split()[-2].replace(',', ''))
else:
raise NotImplementedError(
"We don't have a memory monitor for %s" % sys.platform)
return mem
def safe_masked_invalid(x, copy=False):
x = np.array(x, subok=True, copy=copy)
if not x.dtype.isnative:
# If we have already made a copy, do the byteswap in place, else make a
# copy with the byte order swapped.
x = x.byteswap(inplace=copy).newbyteorder('N') # Swap to native order.
try:
xm = np.ma.masked_invalid(x, copy=False)
xm.shrink_mask()
except TypeError:
return x
return xm
def print_cycles(objects, outstream=sys.stdout, show_progress=False):
"""
Print loops of cyclic references in the given *objects*.
It is often useful to pass in ``gc.garbage`` to find the cycles that are
preventing some objects from being garbage collected.
Parameters
----------
objects
A list of objects to find cycles in.
outstream
The stream for output.
show_progress : bool
If True, print the number of objects reached as they are found.
"""
import gc
def print_path(path):
for i, step in enumerate(path):
# next "wraps around"
next = path[(i + 1) % len(path)]
outstream.write(" %s -- " % type(step))
if isinstance(step, dict):
for key, val in step.items():
if val is next:
outstream.write("[{!r}]".format(key))
break
if key is next:
outstream.write("[key] = {!r}".format(val))
break
elif isinstance(step, list):
outstream.write("[%d]" % step.index(next))
elif isinstance(step, tuple):
outstream.write("( tuple )")
else:
outstream.write(repr(step))
outstream.write(" ->\n")
outstream.write("\n")
def recurse(obj, start, all, current_path):
if show_progress:
outstream.write("%d\r" % len(all))
all[id(obj)] = None
referents = gc.get_referents(obj)
for referent in referents:
# If we've found our way back to the start, this is
# a cycle, so print it out
if referent is start:
print_path(current_path)
# Don't go back through the original list of objects, or
# through temporary references to the object, since those
# are just an artifact of the cycle detector itself.
elif referent is objects or isinstance(referent, types.FrameType):
continue
# We haven't seen this object before, so recurse
elif id(referent) not in all:
recurse(referent, start, all, current_path + [obj])
for obj in objects:
outstream.write(f"Examining: {obj!r}\n")
recurse(obj, obj, {}, [])
class Grouper:
"""
A disjoint-set data structure.
Objects can be joined using :meth:`join`, tested for connectedness
using :meth:`joined`, and all disjoint sets can be retrieved by
using the object as an iterator.
The objects being joined must be hashable and weak-referenceable.
Examples
--------
>>> from matplotlib.cbook import Grouper
>>> class Foo:
... def __init__(self, s):
... self.s = s
... def __repr__(self):
... return self.s
...
>>> a, b, c, d, e, f = [Foo(x) for x in 'abcdef']
>>> grp = Grouper()
>>> grp.join(a, b)
>>> grp.join(b, c)
>>> grp.join(d, e)
>>> sorted(map(tuple, grp))
[(a, b, c), (d, e)]
>>> grp.joined(a, b)
True
>>> grp.joined(a, c)
True
>>> grp.joined(a, d)
False
"""
def __init__(self, init=()):
self._mapping = {weakref.ref(x): [weakref.ref(x)] for x in init}
def __contains__(self, item):
return weakref.ref(item) in self._mapping
def clean(self):
"""Clean dead weak references from the dictionary."""
mapping = self._mapping
to_drop = [key for key in mapping if key() is None]
for key in to_drop:
val = mapping.pop(key)
val.remove(key)
def join(self, a, *args):
"""
Join given arguments into the same set. Accepts one or more arguments.
"""
mapping = self._mapping
set_a = mapping.setdefault(weakref.ref(a), [weakref.ref(a)])
for arg in args:
set_b = mapping.get(weakref.ref(arg), [weakref.ref(arg)])
if set_b is not set_a:
if len(set_b) > len(set_a):
set_a, set_b = set_b, set_a
set_a.extend(set_b)
for elem in set_b:
mapping[elem] = set_a
self.clean()
def joined(self, a, b):
"""Return whether *a* and *b* are members of the same set."""
self.clean()
return (self._mapping.get(weakref.ref(a), object())
is self._mapping.get(weakref.ref(b)))
def remove(self, a):
self.clean()
set_a = self._mapping.pop(weakref.ref(a), None)
if set_a:
set_a.remove(weakref.ref(a))
def __iter__(self):
"""
Iterate over each of the disjoint sets as a list.
The iterator is invalid if interleaved with calls to join().
"""
self.clean()
unique_groups = {id(group): group for group in self._mapping.values()}
for group in unique_groups.values():
yield [x() for x in group]
def get_siblings(self, a):
"""Return all of the items joined with *a*, including itself."""
self.clean()
siblings = self._mapping.get(weakref.ref(a), [weakref.ref(a)])
return [x() for x in siblings]
def simple_linear_interpolation(a, steps):
"""
Resample an array with ``steps - 1`` points between original point pairs.
Along each column of *a*, ``(steps - 1)`` points are introduced between
each original values; the values are linearly interpolated.
Parameters
----------
a : array, shape (n, ...)
steps : int
Returns
-------
array
shape ``((n - 1) * steps + 1, ...)``
"""
fps = a.reshape((len(a), -1))
xp = np.arange(len(a)) * steps
x = np.arange((len(a) - 1) * steps + 1)
return (np.column_stack([np.interp(x, xp, fp) for fp in fps.T])
.reshape((len(x),) + a.shape[1:]))
def delete_masked_points(*args):
"""
Find all masked and/or non-finite points in a set of arguments,
and return the arguments with only the unmasked points remaining.
Arguments can be in any of 5 categories:
1) 1-D masked arrays
2) 1-D ndarrays
3) ndarrays with more than one dimension
4) other non-string iterables
5) anything else
The first argument must be in one of the first four categories;
any argument with a length differing from that of the first
argument (and hence anything in category 5) then will be
passed through unchanged.
Masks are obtained from all arguments of the correct length
in categories 1, 2, and 4; a point is bad if masked in a masked
array or if it is a nan or inf. No attempt is made to
extract a mask from categories 2, 3, and 4 if `numpy.isfinite`
does not yield a Boolean array.
All input arguments that are not passed unchanged are returned
as ndarrays after removing the points or rows corresponding to
masks in any of the arguments.
A vastly simpler version of this function was originally
written as a helper for Axes.scatter().
"""
if not len(args):
return ()
if is_scalar_or_string(args[0]):
raise ValueError("First argument must be a sequence")
nrecs = len(args[0])
margs = []
seqlist = [False] * len(args)
for i, x in enumerate(args):
if not isinstance(x, str) and np.iterable(x) and len(x) == nrecs:
seqlist[i] = True
if isinstance(x, np.ma.MaskedArray):
if x.ndim > 1:
raise ValueError("Masked arrays must be 1-D")
else:
x = np.asarray(x)
margs.append(x)
masks = [] # list of masks that are True where good
for i, x in enumerate(margs):
if seqlist[i]:
if x.ndim > 1:
continue # Don't try to get nan locations unless 1-D.
if isinstance(x, np.ma.MaskedArray):
masks.append(~np.ma.getmaskarray(x)) # invert the mask
xd = x.data
else:
xd = x
try:
mask = np.isfinite(xd)
if isinstance(mask, np.ndarray):
masks.append(mask)
except Exception: # Fixme: put in tuple of possible exceptions?
pass
if len(masks):
mask = np.logical_and.reduce(masks)
igood = mask.nonzero()[0]
if len(igood) < nrecs:
for i, x in enumerate(margs):
if seqlist[i]:
margs[i] = x[igood]
for i, x in enumerate(margs):
if seqlist[i] and isinstance(x, np.ma.MaskedArray):
margs[i] = x.filled()
return margs
def _combine_masks(*args):
"""
Find all masked and/or non-finite points in a set of arguments,
and return the arguments as masked arrays with a common mask.
Arguments can be in any of 5 categories:
1) 1-D masked arrays
2) 1-D ndarrays
3) ndarrays with more than one dimension
4) other non-string iterables
5) anything else
The first argument must be in one of the first four categories;
any argument with a length differing from that of the first
argument (and hence anything in category 5) then will be
passed through unchanged.
Masks are obtained from all arguments of the correct length
in categories 1, 2, and 4; a point is bad if masked in a masked
array or if it is a nan or inf. No attempt is made to
extract a mask from categories 2 and 4 if :meth:`np.isfinite`
does not yield a Boolean array. Category 3 is included to
support RGB or RGBA ndarrays, which are assumed to have only
valid values and which are passed through unchanged.
All input arguments that are not passed unchanged are returned
as masked arrays if any masked points are found, otherwise as
ndarrays.
"""
if not len(args):
return ()
if is_scalar_or_string(args[0]):
raise ValueError("First argument must be a sequence")
nrecs = len(args[0])
margs = [] # Output args; some may be modified.
seqlist = [False] * len(args) # Flags: True if output will be masked.
masks = [] # List of masks.
for i, x in enumerate(args):
if is_scalar_or_string(x) or len(x) != nrecs:
margs.append(x) # Leave it unmodified.
else:
if isinstance(x, np.ma.MaskedArray) and x.ndim > 1:
raise ValueError("Masked arrays must be 1-D")
try:
x = np.asanyarray(x)
except (np.VisibleDeprecationWarning, ValueError):
# NumPy 1.19 raises a warning about ragged arrays, but we want
# to accept basically anything here.
x = np.asanyarray(x, dtype=object)
if x.ndim == 1:
x = safe_masked_invalid(x)
seqlist[i] = True
if np.ma.is_masked(x):
masks.append(np.ma.getmaskarray(x))
margs.append(x) # Possibly modified.
if len(masks):
mask = np.logical_or.reduce(masks)
for i, x in enumerate(margs):
if seqlist[i]:
margs[i] = np.ma.array(x, mask=mask)
return margs
def boxplot_stats(X, whis=1.5, bootstrap=None, labels=None,
autorange=False):
r"""
Return a list of dictionaries of statistics used to draw a series of box
and whisker plots using `~.Axes.bxp`.
Parameters
----------
X : array-like
Data that will be represented in the boxplots. Should have 2 or
fewer dimensions.
whis : float or (float, float), default: 1.5
The position of the whiskers.
If a float, the lower whisker is at the lowest datum above
``Q1 - whis*(Q3-Q1)``, and the upper whisker at the highest datum below
``Q3 + whis*(Q3-Q1)``, where Q1 and Q3 are the first and third
quartiles. The default value of ``whis = 1.5`` corresponds to Tukey's
original definition of boxplots.
If a pair of floats, they indicate the percentiles at which to draw the
whiskers (e.g., (5, 95)). In particular, setting this to (0, 100)
results in whiskers covering the whole range of the data. "range" is
a deprecated synonym for (0, 100).
In the edge case where ``Q1 == Q3``, *whis* is automatically set to
(0, 100) (cover the whole range of the data) if *autorange* is True.
Beyond the whiskers, data are considered outliers and are plotted as
individual points.
bootstrap : int, optional
Number of times the confidence intervals around the median
should be bootstrapped (percentile method).
labels : array-like, optional
Labels for each dataset. Length must be compatible with
dimensions of *X*.
autorange : bool, optional (False)
When `True` and the data are distributed such that the 25th and 75th
percentiles are equal, ``whis`` is set to (0, 100) such that the
whisker ends are at the minimum and maximum of the data.
Returns
-------
list of dict
A list of dictionaries containing the results for each column
of data. Keys of each dictionary are the following:
======== ===================================
Key Value Description
======== ===================================
label tick label for the boxplot
mean arithmetic mean value
med 50th percentile
q1 first quartile (25th percentile)
q3 third quartile (75th percentile)
cilo lower notch around the median
cihi upper notch around the median
whislo end of the lower whisker
whishi end of the upper whisker
fliers outliers
======== ===================================
Notes
-----
Non-bootstrapping approach to confidence interval uses Gaussian-based
asymptotic approximation:
.. math::
\mathrm{med} \pm 1.57 \times \frac{\mathrm{iqr}}{\sqrt{N}}
General approach from:
McGill, R., Tukey, J.W., and Larsen, W.A. (1978) "Variations of
Boxplots", The American Statistician, 32:12-16.
"""
def _bootstrap_median(data, N=5000):
# determine 95% confidence intervals of the median
M = len(data)
percentiles = [2.5, 97.5]
bs_index = np.random.randint(M, size=(N, M))
bsData = data[bs_index]
estimate = np.median(bsData, axis=1, overwrite_input=True)
CI = np.percentile(estimate, percentiles)
return CI
def _compute_conf_interval(data, med, iqr, bootstrap):
if bootstrap is not None:
# Do a bootstrap estimate of notch locations.
# get conf. intervals around median
CI = _bootstrap_median(data, N=bootstrap)
notch_min = CI[0]
notch_max = CI[1]
else:
N = len(data)
notch_min = med - 1.57 * iqr / np.sqrt(N)
notch_max = med + 1.57 * iqr / np.sqrt(N)
return notch_min, notch_max
# output is a list of dicts
bxpstats = []
# convert X to a list of lists
X = _reshape_2D(X, "X")
ncols = len(X)
if labels is None:
labels = itertools.repeat(None)
elif len(labels) != ncols:
raise ValueError("Dimensions of labels and X must be compatible")
input_whis = whis
for ii, (x, label) in enumerate(zip(X, labels)):
# empty dict
stats = {}
if label is not None:
stats['label'] = label
# restore whis to the input values in case it got changed in the loop
whis = input_whis
# note tricksiness, append up here and then mutate below
bxpstats.append(stats)
# if empty, bail
if len(x) == 0:
stats['fliers'] = np.array([])
stats['mean'] = np.nan
stats['med'] = np.nan
stats['q1'] = np.nan
stats['q3'] = np.nan
stats['cilo'] = np.nan
stats['cihi'] = np.nan
stats['whislo'] = np.nan
stats['whishi'] = np.nan
stats['med'] = np.nan
continue
# up-convert to an array, just to be safe
x = np.asarray(x)
# arithmetic mean
stats['mean'] = np.mean(x)
# medians and quartiles
q1, med, q3 = np.percentile(x, [25, 50, 75])
# interquartile range
stats['iqr'] = q3 - q1
if stats['iqr'] == 0 and autorange:
whis = (0, 100)
# conf. interval around median
stats['cilo'], stats['cihi'] = _compute_conf_interval(
x, med, stats['iqr'], bootstrap
)
# lowest/highest non-outliers
if np.isscalar(whis):
if np.isreal(whis):
loval = q1 - whis * stats['iqr']
hival = q3 + whis * stats['iqr']
elif whis in ['range', 'limit', 'limits', 'min/max']:
warn_deprecated(
"3.2", message=f"Setting whis to {whis!r} is deprecated "
"since %(since)s and support for it will be removed "
"%(removal)s; set it to [0, 100] to achieve the same "
"effect.")
loval = np.min(x)
hival = np.max(x)
else:
raise ValueError('whis must be a float or list of percentiles')
else:
loval, hival = np.percentile(x, whis)
# get high extreme
wiskhi = x[x <= hival]
if len(wiskhi) == 0 or np.max(wiskhi) < q3:
stats['whishi'] = q3
else:
stats['whishi'] = np.max(wiskhi)
# get low extreme
wisklo = x[x >= loval]
if len(wisklo) == 0 or np.min(wisklo) > q1:
stats['whislo'] = q1
else:
stats['whislo'] = np.min(wisklo)
# compute a single array of outliers
stats['fliers'] = np.hstack([
x[x < stats['whislo']],
x[x > stats['whishi']],
])
# add in the remaining stats
stats['q1'], stats['med'], stats['q3'] = q1, med, q3
return bxpstats
# The ls_mapper maps short codes for line style to their full name used by
# backends; the reverse mapper is for mapping full names to short ones.
ls_mapper = {'-': 'solid', '--': 'dashed', '-.': 'dashdot', ':': 'dotted'}
ls_mapper_r = {v: k for k, v in ls_mapper.items()}
def contiguous_regions(mask):
"""
Return a list of (ind0, ind1) such that ``mask[ind0:ind1].all()`` is
True and we cover all such regions.
"""
mask = np.asarray(mask, dtype=bool)
if not mask.size:
return []
# Find the indices of region changes, and correct offset
idx, = np.nonzero(mask[:-1] != mask[1:])
idx += 1
# List operations are faster for moderately sized arrays
idx = idx.tolist()
# Add first and/or last index if needed
if mask[0]:
idx = [0] + idx
if mask[-1]:
idx.append(len(mask))
return list(zip(idx[::2], idx[1::2]))
def is_math_text(s):
"""
Return whether the string *s* contains math expressions.
This is done by checking whether *s* contains an even number of
non-escaped dollar signs.
"""
s = str(s)
dollar_count = s.count(r'$') - s.count(r'\$')
even_dollars = (dollar_count > 0 and dollar_count % 2 == 0)
return even_dollars
def _to_unmasked_float_array(x):
"""
Convert a sequence to a float array; if input was a masked array, masked
values are converted to nans.
"""
if hasattr(x, 'mask'):
return np.ma.asarray(x, float).filled(np.nan)
else:
return np.asarray(x, float)
def _check_1d(x):
"""Convert scalars to 1d arrays; pass-through arrays as is."""
if not hasattr(x, 'shape') or len(x.shape) < 1:
return np.atleast_1d(x)
else:
try:
# work around
# https://github.com/pandas-dev/pandas/issues/27775 which
# means the shape of multi-dimensional slicing is not as
# expected. That this ever worked was an unintentional
# quirk of pandas and will raise an exception in the
# future. This slicing warns in pandas >= 1.0rc0 via
# https://github.com/pandas-dev/pandas/pull/30588
#
# < 1.0rc0 : x[:, None].ndim == 1, no warning, custom type
# >= 1.0rc1 : x[:, None].ndim == 2, warns, numpy array
# future : x[:, None] -> raises
#
# This code should correctly identify and coerce to a
# numpy array all pandas versions.
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings(
"always",
category=Warning,
message='Support for multi-dimensional indexing')
ndim = x[:, None].ndim
# we have definitely hit a pandas index or series object
# cast to a numpy array.
if len(w) > 0:
return np.asanyarray(x)
# We have likely hit a pandas object, or at least
# something where 2D slicing does not result in a 2D
# object.
if ndim < 2:
return np.atleast_1d(x)
return x
# In pandas 1.1.0, multidimensional indexing leads to an
# AssertionError for some Series objects, but should be
# IndexError as described in
# https://github.com/pandas-dev/pandas/issues/35527
except (AssertionError, IndexError, TypeError):
return np.atleast_1d(x)
def _reshape_2D(X, name):
"""
Use Fortran ordering to convert ndarrays and lists of iterables to lists of
1D arrays.
Lists of iterables are converted by applying `np.asanyarray` to each of
their elements. 1D ndarrays are returned in a singleton list containing
them. 2D ndarrays are converted to the list of their *columns*.
*name* is used to generate the error message for invalid inputs.
"""
# unpack if we have a values or to_numpy method.
try:
X = X.to_numpy()
except AttributeError:
try:
if isinstance(X.values, np.ndarray):
X = X.values
except AttributeError:
pass
# Iterate over columns for ndarrays.
if isinstance(X, np.ndarray):
X = X.T
if len(X) == 0:
return [[]]
elif X.ndim == 1 and np.ndim(X[0]) == 0:
# 1D array of scalars: directly return it.
return [X]
elif X.ndim in [1, 2]:
# 2D array, or 1D array of iterables: flatten them first.
return [np.reshape(x, -1) for x in X]
else:
raise ValueError(f'{name} must have 2 or fewer dimensions')
# Iterate over list of iterables.
if len(X) == 0:
return [[]]
result = []
is_1d = True
for xi in X:
# check if this is iterable, except for strings which we
# treat as singletons.
if (isinstance(xi, collections.abc.Iterable) and
not isinstance(xi, str)):
is_1d = False
xi = np.asanyarray(xi)
nd = np.ndim(xi)
if nd > 1:
raise ValueError(f'{name} must have 2 or fewer dimensions')
result.append(xi.reshape(-1))
if is_1d:
# 1D array of scalars: directly return it.
return [np.reshape(result, -1)]
else:
# 2D array, or 1D array of iterables: use flattened version.
return result
def violin_stats(X, method, points=100, quantiles=None):
"""
Return a list of dictionaries of data which can be used to draw a series
of violin plots.
See the ``Returns`` section below to view the required keys of the
dictionary.
Users can skip this function and pass a user-defined set of dictionaries
with the same keys to `~.axes.Axes.violinplot` instead of using Matplotlib
to do the calculations. See the *Returns* section below for the keys
that must be present in the dictionaries.
Parameters
----------
X : array-like
Sample data that will be used to produce the gaussian kernel density
estimates. Must have 2 or fewer dimensions.
method : callable
The method used to calculate the kernel density estimate for each
column of data. When called via ``method(v, coords)``, it should
return a vector of the values of the KDE evaluated at the values
specified in coords.
points : int, default: 100
Defines the number of points to evaluate each of the gaussian kernel
density estimates at.
quantiles : array-like, default: None
Defines (if not None) a list of floats in interval [0, 1] for each
column of data, which represents the quantiles that will be rendered
for that column of data. Must have 2 or fewer dimensions. 1D array will
be treated as a singleton list containing them.
Returns
-------
list of dict
A list of dictionaries containing the results for each column of data.
The dictionaries contain at least the following:
- coords: A list of scalars containing the coordinates this particular
kernel density estimate was evaluated at.
- vals: A list of scalars containing the values of the kernel density
estimate at each of the coordinates given in *coords*.
- mean: The mean value for this column of data.
- median: The median value for this column of data.
- min: The minimum value for this column of data.
- max: The maximum value for this column of data.
- quantiles: The quantile values for this column of data.
"""
# List of dictionaries describing each of the violins.
vpstats = []
# Want X to be a list of data sequences
X = _reshape_2D(X, "X")
# Want quantiles to be as the same shape as data sequences
if quantiles is not None and len(quantiles) != 0:
quantiles = _reshape_2D(quantiles, "quantiles")
# Else, mock quantiles if is none or empty
else:
quantiles = [[]] * len(X)
# quantiles should has the same size as dataset
if len(X) != len(quantiles):
raise ValueError("List of violinplot statistics and quantiles values"
" must have the same length")
# Zip x and quantiles
for (x, q) in zip(X, quantiles):
# Dictionary of results for this distribution
stats = {}
# Calculate basic stats for the distribution
min_val = np.min(x)
max_val = np.max(x)
quantile_val = np.percentile(x, 100 * q)
# Evaluate the kernel density estimate
coords = np.linspace(min_val, max_val, points)
stats['vals'] = method(x, coords)
stats['coords'] = coords
# Store additional statistics for this distribution
stats['mean'] = np.mean(x)
stats['median'] = np.median(x)
stats['min'] = min_val
stats['max'] = max_val
stats['quantiles'] = np.atleast_1d(quantile_val)
# Append to output
vpstats.append(stats)
return vpstats
def pts_to_prestep(x, *args):
"""
Convert continuous line to pre-steps.
Given a set of ``N`` points, convert to ``2N - 1`` points, which when
connected linearly give a step function which changes values at the
beginning of the intervals.
Parameters
----------
x : array
The x location of the steps. May be empty.
y1, ..., yp : array
y arrays to be turned into steps; all must be the same length as ``x``.
Returns
-------
array
The x and y values converted to steps in the same order as the input;
can be unpacked as ``x_out, y1_out, ..., yp_out``. If the input is
length ``N``, each of these arrays will be length ``2N + 1``. For
``N=0``, the length will be 0.
Examples
--------
>>> x_s, y1_s, y2_s = pts_to_prestep(x, y1, y2)
"""
steps = np.zeros((1 + len(args), max(2 * len(x) - 1, 0)))
# In all `pts_to_*step` functions, only assign once using *x* and *args*,
# as converting to an array may be expensive.
steps[0, 0::2] = x
steps[0, 1::2] = steps[0, 0:-2:2]
steps[1:, 0::2] = args
steps[1:, 1::2] = steps[1:, 2::2]
return steps
def pts_to_poststep(x, *args):
"""
Convert continuous line to post-steps.
Given a set of ``N`` points convert to ``2N + 1`` points, which when
connected linearly give a step function which changes values at the end of
the intervals.
Parameters
----------
x : array
The x location of the steps. May be empty.
y1, ..., yp : array
y arrays to be turned into steps; all must be the same length as ``x``.
Returns
-------
array
The x and y values converted to steps in the same order as the input;
can be unpacked as ``x_out, y1_out, ..., yp_out``. If the input is
length ``N``, each of these arrays will be length ``2N + 1``. For
``N=0``, the length will be 0.
Examples
--------
>>> x_s, y1_s, y2_s = pts_to_poststep(x, y1, y2)
"""
steps = np.zeros((1 + len(args), max(2 * len(x) - 1, 0)))
steps[0, 0::2] = x
steps[0, 1::2] = steps[0, 2::2]
steps[1:, 0::2] = args
steps[1:, 1::2] = steps[1:, 0:-2:2]
return steps
def pts_to_midstep(x, *args):
"""
Convert continuous line to mid-steps.
Given a set of ``N`` points convert to ``2N`` points which when connected
linearly give a step function which changes values at the middle of the
intervals.
Parameters
----------
x : array
The x location of the steps. May be empty.
y1, ..., yp : array
y arrays to be turned into steps; all must be the same length as
``x``.
Returns
-------
array
The x and y values converted to steps in the same order as the input;
can be unpacked as ``x_out, y1_out, ..., yp_out``. If the input is
length ``N``, each of these arrays will be length ``2N``.
Examples
--------
>>> x_s, y1_s, y2_s = pts_to_midstep(x, y1, y2)
"""
steps = np.zeros((1 + len(args), 2 * len(x)))
x = np.asanyarray(x)
steps[0, 1:-1:2] = steps[0, 2::2] = (x[:-1] + x[1:]) / 2
steps[0, :1] = x[:1] # Also works for zero-sized input.
steps[0, -1:] = x[-1:]
steps[1:, 0::2] = args
steps[1:, 1::2] = steps[1:, 0::2]
return steps
STEP_LOOKUP_MAP = {'default': lambda x, y: (x, y),
'steps': pts_to_prestep,
'steps-pre': pts_to_prestep,
'steps-post': pts_to_poststep,
'steps-mid': pts_to_midstep}
def index_of(y):
"""
A helper function to create reasonable x values for the given *y*.
This is used for plotting (x, y) if x values are not explicitly given.
First try ``y.index`` (assuming *y* is a `pandas.Series`), if that
fails, use ``range(len(y))``.
This will be extended in the future to deal with more types of
labeled data.
Parameters
----------
y : float or array-like
Returns
-------
x, y : ndarray
The x and y values to plot.
"""
try:
return y.index.values, y.values
except AttributeError:
pass
try:
y = _check_1d(y)
except (np.VisibleDeprecationWarning, ValueError):
# NumPy 1.19 will warn on ragged input, and we can't actually use it.
pass
else:
return np.arange(y.shape[0], dtype=float), y
raise ValueError('Input could not be cast to an at-least-1D NumPy array')
def safe_first_element(obj):
"""
Return the first element in *obj*.
This is an type-independent way of obtaining the first element, supporting
both index access and the iterator protocol.
"""
if isinstance(obj, collections.abc.Iterator):
# needed to accept `array.flat` as input.
# np.flatiter reports as an instance of collections.Iterator
# but can still be indexed via [].
# This has the side effect of re-setting the iterator, but
# that is acceptable.
try:
return obj[0]
except TypeError:
pass
raise RuntimeError("matplotlib does not support generators "
"as input")
return next(iter(obj))
def sanitize_sequence(data):
"""
Convert dictview objects to list. Other inputs are returned unchanged.
"""
return (list(data) if isinstance(data, collections.abc.MappingView)
else data)
@_delete_parameter("3.3", "required")
@_delete_parameter("3.3", "forbidden")
@_delete_parameter("3.3", "allowed")
def normalize_kwargs(kw, alias_mapping=None, required=(), forbidden=(),
allowed=None):
"""
Helper function to normalize kwarg inputs.
The order they are resolved are:
1. aliasing
2. required
3. forbidden
4. allowed
This order means that only the canonical names need appear in
*allowed*, *forbidden*, *required*.
Parameters
----------
kw : dict
A dict of keyword arguments.
alias_mapping : dict or Artist subclass or Artist instance, optional
A mapping between a canonical name to a list of
aliases, in order of precedence from lowest to highest.
If the canonical value is not in the list it is assumed to have
the highest priority.
If an Artist subclass or instance is passed, use its properties alias
mapping.
required : list of str, optional
A list of keys that must be in *kws*. This parameter is deprecated.
forbidden : list of str, optional
A list of keys which may not be in *kw*. This parameter is deprecated.
allowed : list of str, optional
A list of allowed fields. If this not None, then raise if
*kw* contains any keys not in the union of *required*
and *allowed*. To allow only the required fields pass in
an empty tuple ``allowed=()``. This parameter is deprecated.
Raises
------
TypeError
To match what python raises if invalid args/kwargs are passed to
a callable.
"""
from matplotlib.artist import Artist
# deal with default value of alias_mapping
if alias_mapping is None:
alias_mapping = dict()
elif (isinstance(alias_mapping, type) and issubclass(alias_mapping, Artist)
or isinstance(alias_mapping, Artist)):
alias_mapping = getattr(alias_mapping, "_alias_map", {})
to_canonical = {alias: canonical
for canonical, alias_list in alias_mapping.items()
for alias in alias_list}
canonical_to_seen = {}
ret = {} # output dictionary
for k, v in kw.items():
canonical = to_canonical.get(k, k)
if canonical in canonical_to_seen:
raise TypeError(f"Got both {canonical_to_seen[canonical]!r} and "
f"{k!r}, which are aliases of one another")
canonical_to_seen[canonical] = k
ret[canonical] = v
fail_keys = [k for k in required if k not in ret]
if fail_keys:
raise TypeError("The required keys {keys!r} "
"are not in kwargs".format(keys=fail_keys))
fail_keys = [k for k in forbidden if k in ret]
if fail_keys:
raise TypeError("The forbidden keys {keys!r} "
"are in kwargs".format(keys=fail_keys))
if allowed is not None:
allowed_set = {*required, *allowed}
fail_keys = [k for k in ret if k not in allowed_set]
if fail_keys:
raise TypeError(
"kwargs contains {keys!r} which are not in the required "
"{req!r} or allowed {allow!r} keys".format(
keys=fail_keys, req=required, allow=allowed))
return ret
@contextlib.contextmanager
def _lock_path(path):
"""
Context manager for locking a path.
Usage::
with _lock_path(path):
...
Another thread or process that attempts to lock the same path will wait
until this context manager is exited.
The lock is implemented by creating a temporary file in the parent
directory, so that directory must exist and be writable.
"""
path = Path(path)
lock_path = path.with_name(path.name + ".matplotlib-lock")
retries = 50
sleeptime = 0.1
for _ in range(retries):
try:
with lock_path.open("xb"):
break
except FileExistsError:
time.sleep(sleeptime)
else:
raise TimeoutError("""\
Lock error: Matplotlib failed to acquire the following lock file:
{}
This maybe due to another process holding this lock file. If you are sure no
other Matplotlib process is running, remove this file and try again.""".format(
lock_path))
try:
yield
finally:
lock_path.unlink()
def _topmost_artist(
artists,
_cached_max=functools.partial(max, key=operator.attrgetter("zorder"))):
"""
Get the topmost artist of a list.
In case of a tie, return the *last* of the tied artists, as it will be
drawn on top of the others. `max` returns the first maximum in case of
ties, so we need to iterate over the list in reverse order.
"""
return _cached_max(reversed(artists))
def _str_equal(obj, s):
"""
Return whether *obj* is a string equal to string *s*.
This helper solely exists to handle the case where *obj* is a numpy array,
because in such cases, a naive ``obj == s`` would yield an array, which
cannot be used in a boolean context.
"""
return isinstance(obj, str) and obj == s
def _str_lower_equal(obj, s):
"""
Return whether *obj* is a string equal, when lowercased, to string *s*.
This helper solely exists to handle the case where *obj* is a numpy array,
because in such cases, a naive ``obj == s`` would yield an array, which
cannot be used in a boolean context.
"""
return isinstance(obj, str) and obj.lower() == s
def _define_aliases(alias_d, cls=None):
"""
Class decorator for defining property aliases.
Use as ::
@cbook._define_aliases({"property": ["alias", ...], ...})
class C: ...
For each property, if the corresponding ``get_property`` is defined in the
class so far, an alias named ``get_alias`` will be defined; the same will
be done for setters. If neither the getter nor the setter exists, an
exception will be raised.
The alias map is stored as the ``_alias_map`` attribute on the class and
can be used by `~.normalize_kwargs` (which assumes that higher priority
aliases come last).
"""
if cls is None: # Return the actual class decorator.
return functools.partial(_define_aliases, alias_d)
def make_alias(name): # Enforce a closure over *name*.
@functools.wraps(getattr(cls, name))
def method(self, *args, **kwargs):
return getattr(self, name)(*args, **kwargs)
return method
for prop, aliases in alias_d.items():
exists = False
for prefix in ["get_", "set_"]:
if prefix + prop in vars(cls):
exists = True
for alias in aliases:
method = make_alias(prefix + prop)
method.__name__ = prefix + alias
method.__doc__ = "Alias for `{}`.".format(prefix + prop)
setattr(cls, prefix + alias, method)
if not exists:
raise ValueError(
"Neither getter nor setter exists for {!r}".format(prop))
def get_aliased_and_aliases(d):
return {*d, *(alias for aliases in d.values() for alias in aliases)}
preexisting_aliases = getattr(cls, "_alias_map", {})
conflicting = (get_aliased_and_aliases(preexisting_aliases)
& get_aliased_and_aliases(alias_d))
if conflicting:
# Need to decide on conflict resolution policy.
raise NotImplementedError(
f"Parent class already defines conflicting aliases: {conflicting}")
cls._alias_map = {**preexisting_aliases, **alias_d}
return cls
def _array_perimeter(arr):
"""
Get the elements on the perimeter of *arr*.
Parameters
----------
arr : ndarray, shape (M, N)
The input array.
Returns
-------
ndarray, shape (2*(M - 1) + 2*(N - 1),)
The elements on the perimeter of the array::
[arr[0, 0], ..., arr[0, -1], ..., arr[-1, -1], ..., arr[-1, 0], ...]
Examples
--------
>>> i, j = np.ogrid[:3,:4]
>>> a = i*10 + j
>>> a
array([[ 0, 1, 2, 3],
[10, 11, 12, 13],
[20, 21, 22, 23]])
>>> _array_perimeter(a)
array([ 0, 1, 2, 3, 13, 23, 22, 21, 20, 10])
"""
# note we use Python's half-open ranges to avoid repeating
# the corners
forward = np.s_[0:-1] # [0 ... -1)
backward = np.s_[-1:0:-1] # [-1 ... 0)
return np.concatenate((
arr[0, forward],
arr[forward, -1],
arr[-1, backward],
arr[backward, 0],
))
def _unfold(arr, axis, size, step):
"""
Append an extra dimension containing sliding windows along *axis*.
All windows are of size *size* and begin with every *step* elements.
Parameters
----------
arr : ndarray, shape (N_1, ..., N_k)
The input array
axis : int
Axis along which the windows are extracted
size : int
Size of the windows
step : int
Stride between first elements of subsequent windows.
Returns
-------
ndarray, shape (N_1, ..., 1 + (N_axis-size)/step, ..., N_k, size)
Examples
--------
>>> i, j = np.ogrid[:3,:7]
>>> a = i*10 + j
>>> a
array([[ 0, 1, 2, 3, 4, 5, 6],
[10, 11, 12, 13, 14, 15, 16],
[20, 21, 22, 23, 24, 25, 26]])
>>> _unfold(a, axis=1, size=3, step=2)
array([[[ 0, 1, 2],
[ 2, 3, 4],
[ 4, 5, 6]],
[[10, 11, 12],
[12, 13, 14],
[14, 15, 16]],
[[20, 21, 22],
[22, 23, 24],
[24, 25, 26]]])
"""
new_shape = [*arr.shape, size]
new_strides = [*arr.strides, arr.strides[axis]]
new_shape[axis] = (new_shape[axis] - size) // step + 1
new_strides[axis] = new_strides[axis] * step
return np.lib.stride_tricks.as_strided(arr,
shape=new_shape,
strides=new_strides,
writeable=False)
def _array_patch_perimeters(x, rstride, cstride):
"""
Extract perimeters of patches from *arr*.
Extracted patches are of size (*rstride* + 1) x (*cstride* + 1) and
share perimeters with their neighbors. The ordering of the vertices matches
that returned by ``_array_perimeter``.
Parameters
----------
x : ndarray, shape (N, M)
Input array
rstride : int
Vertical (row) stride between corresponding elements of each patch
cstride : int
Horizontal (column) stride between corresponding elements of each patch
Returns
-------
ndarray, shape (N/rstride * M/cstride, 2 * (rstride + cstride))
"""
assert rstride > 0 and cstride > 0
assert (x.shape[0] - 1) % rstride == 0
assert (x.shape[1] - 1) % cstride == 0
# We build up each perimeter from four half-open intervals. Here is an
# illustrated explanation for rstride == cstride == 3
#
# T T T R
# L R
# L R
# L B B B
#
# where T means that this element will be in the top array, R for right,
# B for bottom and L for left. Each of the arrays below has a shape of:
#
# (number of perimeters that can be extracted vertically,
# number of perimeters that can be extracted horizontally,
# cstride for top and bottom and rstride for left and right)
#
# Note that _unfold doesn't incur any memory copies, so the only costly
# operation here is the np.concatenate.
top = _unfold(x[:-1:rstride, :-1], 1, cstride, cstride)
bottom = _unfold(x[rstride::rstride, 1:], 1, cstride, cstride)[..., ::-1]
right = _unfold(x[:-1, cstride::cstride], 0, rstride, rstride)
left = _unfold(x[1:, :-1:cstride], 0, rstride, rstride)[..., ::-1]
return (np.concatenate((top, right, bottom, left), axis=2)
.reshape(-1, 2 * (rstride + cstride)))
@contextlib.contextmanager
def _setattr_cm(obj, **kwargs):
"""
Temporarily set some attributes; restore original state at context exit.
"""
sentinel = object()
origs = {}
for attr in kwargs:
orig = getattr(obj, attr, sentinel)
if attr in obj.__dict__ or orig is sentinel:
# if we are pulling from the instance dict or the object
# does not have this attribute we can trust the above
origs[attr] = orig
else:
# if the attribute is not in the instance dict it must be
# from the class level
cls_orig = getattr(type(obj), attr)
# if we are dealing with a property (but not a general descriptor)
# we want to set the original value back.
if isinstance(cls_orig, property):
origs[attr] = orig
# otherwise this is _something_ we are going to shadow at
# the instance dict level from higher up in the MRO. We
# are going to assume we can delattr(obj, attr) to clean
# up after ourselves. It is possible that this code will
# fail if used with a non-property custom descriptor which
# implements __set__ (and __delete__ does not act like a
# stack). However, this is an internal tool and we do not
# currently have any custom descriptors.
else:
origs[attr] = sentinel
try:
for attr, val in kwargs.items():
setattr(obj, attr, val)
yield
finally:
for attr, orig in origs.items():
if orig is sentinel:
delattr(obj, attr)
else:
setattr(obj, attr, orig)
def _warn_external(message, category=None):
"""
`warnings.warn` wrapper that sets *stacklevel* to "outside Matplotlib".
The original emitter of the warning can be obtained by patching this
function back to `warnings.warn`, i.e. ``cbook._warn_external =
warnings.warn`` (or ``functools.partial(warnings.warn, stacklevel=2)``,
etc.).
"""
frame = sys._getframe()
for stacklevel in itertools.count(1): # lgtm[py/unused-loop-variable]
if frame is None:
# when called in embedded context may hit frame is None
break
if not re.match(r"\A(matplotlib|mpl_toolkits)(\Z|\.(?!tests\.))",
# Work around sphinx-gallery not setting __name__.
frame.f_globals.get("__name__", "")):
break
frame = frame.f_back
warnings.warn(message, category, stacklevel)
class _OrderedSet(collections.abc.MutableSet):
def __init__(self):
self._od = collections.OrderedDict()
def __contains__(self, key):
return key in self._od
def __iter__(self):
return iter(self._od)
def __len__(self):
return len(self._od)
def add(self, key):
self._od.pop(key, None)
self._od[key] = None
def discard(self, key):
self._od.pop(key, None)
# Agg's buffers are unmultiplied RGBA8888, which neither PyQt4 nor cairo
# support; however, both do support premultiplied ARGB32.
def _premultiplied_argb32_to_unmultiplied_rgba8888(buf):
"""
Convert a premultiplied ARGB32 buffer to an unmultiplied RGBA8888 buffer.
"""
rgba = np.take( # .take() ensures C-contiguity of the result.
buf,
[2, 1, 0, 3] if sys.byteorder == "little" else [1, 2, 3, 0], axis=2)
rgb = rgba[..., :-1]
alpha = rgba[..., -1]
# Un-premultiply alpha. The formula is the same as in cairo-png.c.
mask = alpha != 0
for channel in np.rollaxis(rgb, -1):
channel[mask] = (
(channel[mask].astype(int) * 255 + alpha[mask] // 2)
// alpha[mask])
return rgba
def _unmultiplied_rgba8888_to_premultiplied_argb32(rgba8888):
"""
Convert an unmultiplied RGBA8888 buffer to a premultiplied ARGB32 buffer.
"""
if sys.byteorder == "little":
argb32 = np.take(rgba8888, [2, 1, 0, 3], axis=2)
rgb24 = argb32[..., :-1]
alpha8 = argb32[..., -1:]
else:
argb32 = np.take(rgba8888, [3, 0, 1, 2], axis=2)
alpha8 = argb32[..., :1]
rgb24 = argb32[..., 1:]
# Only bother premultiplying when the alpha channel is not fully opaque,
# as the cost is not negligible. The unsafe cast is needed to do the
# multiplication in-place in an integer buffer.
if alpha8.min() != 0xff:
np.multiply(rgb24, alpha8 / 0xff, out=rgb24, casting="unsafe")
return argb32
def _pformat_subprocess(command):
"""Pretty-format a subprocess command for printing/logging purposes."""
return (command if isinstance(command, str)
else " ".join(shlex.quote(os.fspath(arg)) for arg in command))
def _check_and_log_subprocess(command, logger, **kwargs):
"""
Run *command*, returning its stdout output if it succeeds.
If it fails (exits with nonzero return code), raise an exception whose text
includes the failed command and captured stdout and stderr output.
Regardless of the return code, the command is logged at DEBUG level on
*logger*. In case of success, the output is likewise logged.
"""
logger.debug('%s', _pformat_subprocess(command))
proc = subprocess.run(
command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, **kwargs)
if proc.returncode:
stdout = proc.stdout
if isinstance(stdout, bytes):
stdout = stdout.decode()
stderr = proc.stderr
if isinstance(stderr, bytes):
stderr = stderr.decode()
raise RuntimeError(
f"The command\n"
f" {_pformat_subprocess(command)}\n"
f"failed and generated the following output:\n"
f"{stdout}\n"
f"and the following error:\n"
f"{stderr}")
if proc.stdout:
logger.debug("stdout:\n%s", proc.stdout)
if proc.stderr:
logger.debug("stderr:\n%s", proc.stderr)
return proc.stdout
# In the following _check_foo functions, the first parameter starts with an
# underscore because it is intended to be positional-only (e.g., so that
# `_check_isinstance([...], types=foo)` doesn't fail.
def _check_isinstance(_types, **kwargs):
"""
For each *key, value* pair in *kwargs*, check that *value* is an instance
of one of *_types*; if not, raise an appropriate TypeError.
As a special case, a ``None`` entry in *_types* is treated as NoneType.
Examples
--------
>>> cbook._check_isinstance((SomeClass, None), arg=arg)
"""
types = _types
if isinstance(types, type) or types is None:
types = (types,)
none_allowed = None in types
types = tuple(tp for tp in types if tp is not None)
def type_name(tp):
return (tp.__qualname__ if tp.__module__ == "builtins"
else f"{tp.__module__}.{tp.__qualname__}")
names = [*map(type_name, types)]
if none_allowed:
types = (*types, type(None))
names.append("None")
for k, v in kwargs.items():
if not isinstance(v, types):
raise TypeError(
"{!r} must be an instance of {}, not a {}".format(
k,
", ".join(names[:-1]) + " or " + names[-1]
if len(names) > 1 else names[0],
type_name(type(v))))
def _check_in_list(_values, **kwargs):
"""
For each *key, value* pair in *kwargs*, check that *value* is in *_values*;
if not, raise an appropriate ValueError.
Examples
--------
>>> cbook._check_in_list(["foo", "bar"], arg=arg, other_arg=other_arg)
"""
values = _values
for k, v in kwargs.items():
if v not in values:
raise ValueError(
"{!r} is not a valid value for {}; supported values are {}"
.format(v, k, ', '.join(map(repr, values))))
def _check_shape(_shape, **kwargs):
"""
For each *key, value* pair in *kwargs*, check that *value* has the shape
*_shape*, if not, raise an appropriate ValueError.
*None* in the shape is treated as a "free" size that can have any length.
e.g. (None, 2) -> (N, 2)
The values checked must be numpy arrays.
Examples
--------
To check for (N, 2) shaped arrays
>>> cbook._check_in_list((None, 2), arg=arg, other_arg=other_arg)
"""
target_shape = _shape
for k, v in kwargs.items():
data_shape = v.shape
if len(target_shape) != len(data_shape) or any(
t not in [s, None]
for t, s in zip(target_shape, data_shape)
):
dim_labels = iter(itertools.chain(
'MNLIJKLH',
(f"D{i}" for i in itertools.count())))
text_shape = ", ".join((str(n)
if n is not None
else next(dim_labels)
for n in target_shape))
raise ValueError(
f"{k!r} must be {len(target_shape)}D "
f"with shape ({text_shape}). "
f"Your input has shape {v.shape}."
)
def _check_getitem(_mapping, **kwargs):
"""
*kwargs* must consist of a single *key, value* pair. If *key* is in
*_mapping*, return ``_mapping[value]``; else, raise an appropriate
ValueError.
Examples
--------
>>> cbook._check_getitem({"foo": "bar"}, arg=arg)
"""
mapping = _mapping
if len(kwargs) != 1:
raise ValueError("_check_getitem takes a single keyword argument")
(k, v), = kwargs.items()
try:
return mapping[v]
except KeyError:
raise ValueError(
"{!r} is not a valid value for {}; supported values are {}"
.format(v, k, ', '.join(map(repr, mapping)))) from None
class _classproperty:
"""
Like `property`, but also triggers on access via the class, and it is the
*class* that's passed as argument.
Examples
--------
::
class C:
@classproperty
def foo(cls):
return cls.__name__
assert C.foo == "C"
"""
def __init__(self, fget):
self._fget = fget
def __get__(self, instance, owner):
return self._fget(owner)
def _backend_module_name(name):
"""
Convert a backend name (either a standard backend -- "Agg", "TkAgg", ... --
or a custom backend -- "module://...") to the corresponding module name).
"""
return (name[9:] if name.startswith("module://")
else "matplotlib.backends.backend_{}".format(name.lower()))