collections.py
75.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
"""
Classes for the efficient drawing of large collections of objects that
share most properties, e.g., a large number of line segments or
polygons.
The classes are not meant to be as flexible as their single element
counterparts (e.g., you may not be able to select all line styles) but
they are meant to be fast for common use cases (e.g., a large set of solid
line segments).
"""
import math
from numbers import Number
import numpy as np
import matplotlib as mpl
from . import (_path, artist, cbook, cm, colors as mcolors, docstring,
lines as mlines, path as mpath, transforms)
import warnings
@cbook._define_aliases({
"antialiased": ["antialiaseds", "aa"],
"edgecolor": ["edgecolors", "ec"],
"facecolor": ["facecolors", "fc"],
"linestyle": ["linestyles", "dashes", "ls"],
"linewidth": ["linewidths", "lw"],
})
class Collection(artist.Artist, cm.ScalarMappable):
r"""
Base class for Collections. Must be subclassed to be usable.
A Collection represents a sequence of `.Patch`\es that can be drawn
more efficiently together than individually. For example, when a single
path is being drawn repeatedly at different offsets, the renderer can
typically execute a ``draw_marker()`` call much more efficiently than a
series of repeated calls to ``draw_path()`` with the offsets put in
one-by-one.
Most properties of a collection can be configured per-element. Therefore,
Collections have "plural" versions of many of the properties of a `.Patch`
(e.g. `.Collection.get_paths` instead of `.Patch.get_path`). Exceptions are
the *zorder*, *hatch*, *pickradius*, *capstyle* and *joinstyle* properties,
which can only be set globally for the whole collection.
Besides these exceptions, all properties can be specified as single values
(applying to all elements) or sequences of values. The property of the
``i``\th element of the collection is::
prop[i % len(prop)]
Each Collection can optionally be used as its own `.ScalarMappable` by
passing the *norm* and *cmap* parameters to its constructor. If the
Collection's `.ScalarMappable` matrix ``_A`` has been set (via a call
to `.Collection.set_array`), then at draw time this internal scalar
mappable will be used to set the ``facecolors`` and ``edgecolors``,
ignoring those that were manually passed in.
"""
_offsets = np.zeros((0, 2))
_transOffset = transforms.IdentityTransform()
#: Either a list of 3x3 arrays or an Nx3x3 array (representing N
#: transforms), suitable for the `all_transforms` argument to
#: `~matplotlib.backend_bases.RendererBase.draw_path_collection`;
#: each 3x3 array is used to initialize an
#: `~matplotlib.transforms.Affine2D` object.
#: Each kind of collection defines this based on its arguments.
_transforms = np.empty((0, 3, 3))
# Whether to draw an edge by default. Set on a
# subclass-by-subclass basis.
_edge_default = False
@cbook._delete_parameter("3.3", "offset_position")
def __init__(self,
edgecolors=None,
facecolors=None,
linewidths=None,
linestyles='solid',
capstyle=None,
joinstyle=None,
antialiaseds=None,
offsets=None,
transOffset=None,
norm=None, # optional for ScalarMappable
cmap=None, # ditto
pickradius=5.0,
hatch=None,
urls=None,
offset_position='screen',
zorder=1,
**kwargs
):
"""
Parameters
----------
edgecolors : color or list of colors, default: :rc:`patch.edgecolor`
Edge color for each patch making up the collection. The special
value 'face' can be passed to make the edgecolor match the
facecolor.
facecolors : color or list of colors, default: :rc:`patch.facecolor`
Face color for each patch making up the collection.
linewidths : float or list of floats, default: :rc:`patch.linewidth`
Line width for each patch making up the collection.
linestyles : str or tuple or list thereof, default: 'solid'
Valid strings are ['solid', 'dashed', 'dashdot', 'dotted', '-',
'--', '-.', ':']. Dash tuples should be of the form::
(offset, onoffseq),
where *onoffseq* is an even length tuple of on and off ink lengths
in points. For examples, see
:doc:`/gallery/lines_bars_and_markers/linestyles`.
capstyle : str, default: :rc:`patch.capstyle`
Style to use for capping lines for all paths in the collection.
See :doc:`/gallery/lines_bars_and_markers/joinstyle` for
a demonstration of each of the allowed values.
joinstyle : str, default: :rc:`patch.joinstyle`
Style to use for joining lines for all paths in the collection.
See :doc:`/gallery/lines_bars_and_markers/joinstyle` for
a demonstration of each of the allowed values.
antialiaseds : bool or list of bool, default: :rc:`patch.antialiased`
Whether each pach in the collection should be drawn with
antialiasing.
offsets : (float, float) or list thereof, default: (0, 0)
A vector by which to translate each patch after rendering (default
is no translation). The translation is performed in screen (pixel)
coordinates (i.e. after the Artist's transform is applied).
transOffset : `~.transforms.Transform`, default: `.IdentityTransform`
A single transform which will be applied to each *offsets* vector
before it is used.
offset_position : {'screen' (default), 'data' (deprecated)}
If set to 'data' (deprecated), *offsets* will be treated as if it
is in data coordinates instead of in screen coordinates.
norm : `~.colors.Normalize`, optional
Forwarded to `.ScalarMappable`. The default of
``None`` means that the first draw call will set ``vmin`` and
``vmax`` using the minimum and maximum values of the data.
cmap : `~.colors.Colormap`, optional
Forwarded to `.ScalarMappable`. The default of
``None`` will result in :rc:`image.cmap` being used.
hatch : str, optional
Hatching pattern to use in filled paths, if any. Valid strings are
['/', '\\', '|', '-', '+', 'x', 'o', 'O', '.', '*']. See
:doc:`/gallery/shapes_and_collections/hatch_demo` for the meaning
of each hatch type.
pickradius : float, default: 5.0
If ``pickradius <= 0``, then `.Collection.contains` will return
``True`` whenever the test point is inside of one of the polygons
formed by the control points of a Path in the Collection. On the
other hand, if it is greater than 0, then we instead check if the
test point is contained in a stroke of width ``2*pickradius``
following any of the Paths in the Collection.
urls : list of str, default: None
A URL for each patch to link to once drawn. Currently only works
for the SVG backend. See :doc:`/gallery/misc/hyperlinks_sgskip` for
examples.
zorder : float, default: 1
The drawing order, shared by all Patches in the Collection. See
:doc:`/gallery/misc/zorder_demo` for all defaults and examples.
"""
artist.Artist.__init__(self)
cm.ScalarMappable.__init__(self, norm, cmap)
# list of un-scaled dash patterns
# this is needed scaling the dash pattern by linewidth
self._us_linestyles = [(0, None)]
# list of dash patterns
self._linestyles = [(0, None)]
# list of unbroadcast/scaled linewidths
self._us_lw = [0]
self._linewidths = [0]
self._is_filled = True # May be modified by set_facecolor().
self._hatch_color = mcolors.to_rgba(mpl.rcParams['hatch.color'])
self.set_facecolor(facecolors)
self.set_edgecolor(edgecolors)
self.set_linewidth(linewidths)
self.set_linestyle(linestyles)
self.set_antialiased(antialiaseds)
self.set_pickradius(pickradius)
self.set_urls(urls)
self.set_hatch(hatch)
self._offset_position = "screen"
if offset_position != "screen":
self.set_offset_position(offset_position) # emit deprecation.
self.set_zorder(zorder)
if capstyle:
self.set_capstyle(capstyle)
else:
self._capstyle = None
if joinstyle:
self.set_joinstyle(joinstyle)
else:
self._joinstyle = None
self._offsets = np.zeros((1, 2))
# save if offsets passed in were none...
self._offsetsNone = offsets is None
self._uniform_offsets = None
if offsets is not None:
offsets = np.asanyarray(offsets, float)
# Broadcast (2,) -> (1, 2) but nothing else.
if offsets.shape == (2,):
offsets = offsets[None, :]
if transOffset is not None:
self._offsets = offsets
self._transOffset = transOffset
else:
self._uniform_offsets = offsets
self._path_effects = None
self.update(kwargs)
self._paths = None
def get_paths(self):
return self._paths
def set_paths(self):
raise NotImplementedError
def get_transforms(self):
return self._transforms
def get_offset_transform(self):
t = self._transOffset
if (not isinstance(t, transforms.Transform)
and hasattr(t, '_as_mpl_transform')):
t = t._as_mpl_transform(self.axes)
return t
def get_datalim(self, transData):
# Calculate the data limits and return them as a `.Bbox`.
#
# This operation depends on the transforms for the data in the
# collection and whether the collection has offsets:
#
# 1. offsets = None, transform child of transData: use the paths for
# the automatic limits (i.e. for LineCollection in streamline).
# 2. offsets != None: offset_transform is child of transData:
#
# a. transform is child of transData: use the path + offset for
# limits (i.e for bar).
# b. transform is not a child of transData: just use the offsets
# for the limits (i.e. for scatter)
#
# 3. otherwise return a null Bbox.
transform = self.get_transform()
transOffset = self.get_offset_transform()
if (not self._offsetsNone and
not transOffset.contains_branch(transData)):
# if there are offsets but in some coords other than data,
# then don't use them for autoscaling.
return transforms.Bbox.null()
offsets = self._offsets
paths = self.get_paths()
if not transform.is_affine:
paths = [transform.transform_path_non_affine(p) for p in paths]
# Don't convert transform to transform.get_affine() here because
# we may have transform.contains_branch(transData) but not
# transforms.get_affine().contains_branch(transData). But later,
# be careful to only apply the affine part that remains.
if isinstance(offsets, np.ma.MaskedArray):
offsets = offsets.filled(np.nan)
# get_path_collection_extents handles nan but not masked arrays
if len(paths) and len(offsets):
if any(transform.contains_branch_seperately(transData)):
# collections that are just in data units (like quiver)
# can properly have the axes limits set by their shape +
# offset. LineCollections that have no offsets can
# also use this algorithm (like streamplot).
result = mpath.get_path_collection_extents(
transform.get_affine(), paths, self.get_transforms(),
transOffset.transform_non_affine(offsets),
transOffset.get_affine().frozen())
return result.transformed(transData.inverted())
if not self._offsetsNone:
# this is for collections that have their paths (shapes)
# in physical, axes-relative, or figure-relative units
# (i.e. like scatter). We can't uniquely set limits based on
# those shapes, so we just set the limits based on their
# location.
offsets = (transOffset - transData).transform(offsets)
# note A-B means A B^{-1}
offsets = np.ma.masked_invalid(offsets)
if not offsets.mask.all():
points = np.row_stack((offsets.min(axis=0),
offsets.max(axis=0)))
return transforms.Bbox(points)
return transforms.Bbox.null()
def get_window_extent(self, renderer):
# TODO: check to ensure that this does not fail for
# cases other than scatter plot legend
return self.get_datalim(transforms.IdentityTransform())
def _prepare_points(self):
# Helper for drawing and hit testing.
transform = self.get_transform()
transOffset = self.get_offset_transform()
offsets = self._offsets
paths = self.get_paths()
if self.have_units():
paths = []
for path in self.get_paths():
vertices = path.vertices
xs, ys = vertices[:, 0], vertices[:, 1]
xs = self.convert_xunits(xs)
ys = self.convert_yunits(ys)
paths.append(mpath.Path(np.column_stack([xs, ys]), path.codes))
if offsets.size:
xs = self.convert_xunits(offsets[:, 0])
ys = self.convert_yunits(offsets[:, 1])
offsets = np.column_stack([xs, ys])
if not transform.is_affine:
paths = [transform.transform_path_non_affine(path)
for path in paths]
transform = transform.get_affine()
if not transOffset.is_affine:
offsets = transOffset.transform_non_affine(offsets)
# This might have changed an ndarray into a masked array.
transOffset = transOffset.get_affine()
if isinstance(offsets, np.ma.MaskedArray):
offsets = offsets.filled(np.nan)
# Changing from a masked array to nan-filled ndarray
# is probably most efficient at this point.
return transform, transOffset, offsets, paths
@artist.allow_rasterization
def draw(self, renderer):
if not self.get_visible():
return
renderer.open_group(self.__class__.__name__, self.get_gid())
self.update_scalarmappable()
transform, transOffset, offsets, paths = self._prepare_points()
gc = renderer.new_gc()
self._set_gc_clip(gc)
gc.set_snap(self.get_snap())
if self._hatch:
gc.set_hatch(self._hatch)
gc.set_hatch_color(self._hatch_color)
if self.get_sketch_params() is not None:
gc.set_sketch_params(*self.get_sketch_params())
if self.get_path_effects():
from matplotlib.patheffects import PathEffectRenderer
renderer = PathEffectRenderer(self.get_path_effects(), renderer)
# If the collection is made up of a single shape/color/stroke,
# it can be rendered once and blitted multiple times, using
# `draw_markers` rather than `draw_path_collection`. This is
# *much* faster for Agg, and results in smaller file sizes in
# PDF/SVG/PS.
trans = self.get_transforms()
facecolors = self.get_facecolor()
edgecolors = self.get_edgecolor()
do_single_path_optimization = False
if (len(paths) == 1 and len(trans) <= 1 and
len(facecolors) == 1 and len(edgecolors) == 1 and
len(self._linewidths) == 1 and
all(ls[1] is None for ls in self._linestyles) and
len(self._antialiaseds) == 1 and len(self._urls) == 1 and
self.get_hatch() is None):
if len(trans):
combined_transform = transforms.Affine2D(trans[0]) + transform
else:
combined_transform = transform
extents = paths[0].get_extents(combined_transform)
if (extents.width < self.figure.bbox.width
and extents.height < self.figure.bbox.height):
do_single_path_optimization = True
if self._joinstyle:
gc.set_joinstyle(self._joinstyle)
if self._capstyle:
gc.set_capstyle(self._capstyle)
if do_single_path_optimization:
gc.set_foreground(tuple(edgecolors[0]))
gc.set_linewidth(self._linewidths[0])
gc.set_dashes(*self._linestyles[0])
gc.set_antialiased(self._antialiaseds[0])
gc.set_url(self._urls[0])
renderer.draw_markers(
gc, paths[0], combined_transform.frozen(),
mpath.Path(offsets), transOffset, tuple(facecolors[0]))
else:
renderer.draw_path_collection(
gc, transform.frozen(), paths,
self.get_transforms(), offsets, transOffset,
self.get_facecolor(), self.get_edgecolor(),
self._linewidths, self._linestyles,
self._antialiaseds, self._urls,
self._offset_position)
gc.restore()
renderer.close_group(self.__class__.__name__)
self.stale = False
def set_pickradius(self, pr):
"""
Set the pick radius used for containment tests.
Parameters
----------
d : float
Pick radius, in points.
"""
self._pickradius = pr
def get_pickradius(self):
return self._pickradius
def contains(self, mouseevent):
"""
Test whether the mouse event occurred in the collection.
Returns ``bool, dict(ind=itemlist)``, where every item in itemlist
contains the event.
"""
inside, info = self._default_contains(mouseevent)
if inside is not None:
return inside, info
if not self.get_visible():
return False, {}
pickradius = (
float(self._picker)
if isinstance(self._picker, Number) and
self._picker is not True # the bool, not just nonzero or 1
else self._pickradius)
if self.axes:
self.axes._unstale_viewLim()
transform, transOffset, offsets, paths = self._prepare_points()
# Tests if the point is contained on one of the polygons formed
# by the control points of each of the paths. A point is considered
# "on" a path if it would lie within a stroke of width 2*pickradius
# following the path. If pickradius <= 0, then we instead simply check
# if the point is *inside* of the path instead.
ind = _path.point_in_path_collection(
mouseevent.x, mouseevent.y, pickradius,
transform.frozen(), paths, self.get_transforms(),
offsets, transOffset, pickradius <= 0,
self._offset_position)
return len(ind) > 0, dict(ind=ind)
def set_urls(self, urls):
"""
Parameters
----------
urls : list of str or None
Notes
-----
URLs are currently only implemented by the SVG backend. They are
ignored by all other backends.
"""
self._urls = urls if urls is not None else [None]
self.stale = True
def get_urls(self):
"""
Return a list of URLs, one for each element of the collection.
The list contains *None* for elements without a URL. See
:doc:`/gallery/misc/hyperlinks_sgskip` for an example.
"""
return self._urls
def set_hatch(self, hatch):
r"""
Set the hatching pattern
*hatch* can be one of::
/ - diagonal hatching
\ - back diagonal
| - vertical
- - horizontal
+ - crossed
x - crossed diagonal
o - small circle
O - large circle
. - dots
* - stars
Letters can be combined, in which case all the specified
hatchings are done. If same letter repeats, it increases the
density of hatching of that pattern.
Hatching is supported in the PostScript, PDF, SVG and Agg
backends only.
Unlike other properties such as linewidth and colors, hatching
can only be specified for the collection as a whole, not separately
for each member.
Parameters
----------
hatch : {'/', '\\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
"""
self._hatch = hatch
self.stale = True
def get_hatch(self):
"""Return the current hatching pattern."""
return self._hatch
def set_offsets(self, offsets):
"""
Set the offsets for the collection.
Parameters
----------
offsets : array-like (N, 2) or (2,)
"""
offsets = np.asanyarray(offsets, float)
if offsets.shape == (2,): # Broadcast (2,) -> (1, 2) but nothing else.
offsets = offsets[None, :]
# This decision is based on how they are initialized above in __init__.
if self._uniform_offsets is None:
self._offsets = offsets
else:
self._uniform_offsets = offsets
self.stale = True
def get_offsets(self):
"""Return the offsets for the collection."""
# This decision is based on how they are initialized above in __init__.
if self._uniform_offsets is None:
return self._offsets
else:
return self._uniform_offsets
@cbook.deprecated("3.3")
def set_offset_position(self, offset_position):
"""
Set how offsets are applied. If *offset_position* is 'screen'
(default) the offset is applied after the master transform has
been applied, that is, the offsets are in screen coordinates.
If offset_position is 'data', the offset is applied before the
master transform, i.e., the offsets are in data coordinates.
Parameters
----------
offset_position : {'screen', 'data'}
"""
cbook._check_in_list(['screen', 'data'],
offset_position=offset_position)
self._offset_position = offset_position
self.stale = True
@cbook.deprecated("3.3")
def get_offset_position(self):
"""
Return how offsets are applied for the collection. If
*offset_position* is 'screen', the offset is applied after the
master transform has been applied, that is, the offsets are in
screen coordinates. If offset_position is 'data', the offset
is applied before the master transform, i.e., the offsets are
in data coordinates.
"""
return self._offset_position
def set_linewidth(self, lw):
"""
Set the linewidth(s) for the collection. *lw* can be a scalar
or a sequence; if it is a sequence the patches will cycle
through the sequence
Parameters
----------
lw : float or list of floats
"""
if lw is None:
lw = mpl.rcParams['patch.linewidth']
if lw is None:
lw = mpl.rcParams['lines.linewidth']
# get the un-scaled/broadcast lw
self._us_lw = np.atleast_1d(np.asarray(lw))
# scale all of the dash patterns.
self._linewidths, self._linestyles = self._bcast_lwls(
self._us_lw, self._us_linestyles)
self.stale = True
def set_linestyle(self, ls):
"""
Set the linestyle(s) for the collection.
=========================== =================
linestyle description
=========================== =================
``'-'`` or ``'solid'`` solid line
``'--'`` or ``'dashed'`` dashed line
``'-.'`` or ``'dashdot'`` dash-dotted line
``':'`` or ``'dotted'`` dotted line
=========================== =================
Alternatively a dash tuple of the following form can be provided::
(offset, onoffseq),
where ``onoffseq`` is an even length tuple of on and off ink in points.
Parameters
----------
ls : str or tuple or list thereof
Valid values for individual linestyles include {'-', '--', '-.',
':', '', (offset, on-off-seq)}. See `.Line2D.set_linestyle` for a
complete description.
"""
try:
if isinstance(ls, str):
ls = cbook.ls_mapper.get(ls, ls)
dashes = [mlines._get_dash_pattern(ls)]
else:
try:
dashes = [mlines._get_dash_pattern(ls)]
except ValueError:
dashes = [mlines._get_dash_pattern(x) for x in ls]
except ValueError as err:
raise ValueError('Do not know how to convert {!r} to '
'dashes'.format(ls)) from err
# get the list of raw 'unscaled' dash patterns
self._us_linestyles = dashes
# broadcast and scale the lw and dash patterns
self._linewidths, self._linestyles = self._bcast_lwls(
self._us_lw, self._us_linestyles)
def set_capstyle(self, cs):
"""
Set the capstyle for the collection (for all its elements).
Parameters
----------
cs : {'butt', 'round', 'projecting'}
The capstyle.
"""
mpl.rcsetup.validate_capstyle(cs)
self._capstyle = cs
def get_capstyle(self):
return self._capstyle
def set_joinstyle(self, js):
"""
Set the joinstyle for the collection (for all its elements).
Parameters
----------
js : {'miter', 'round', 'bevel'}
The joinstyle.
"""
mpl.rcsetup.validate_joinstyle(js)
self._joinstyle = js
def get_joinstyle(self):
return self._joinstyle
@staticmethod
def _bcast_lwls(linewidths, dashes):
"""
Internal helper function to broadcast + scale ls/lw
In the collection drawing code, the linewidth and linestyle are cycled
through as circular buffers (via ``v[i % len(v)]``). Thus, if we are
going to scale the dash pattern at set time (not draw time) we need to
do the broadcasting now and expand both lists to be the same length.
Parameters
----------
linewidths : list
line widths of collection
dashes : list
dash specification (offset, (dash pattern tuple))
Returns
-------
linewidths, dashes : list
Will be the same length, dashes are scaled by paired linewidth
"""
if mpl.rcParams['_internal.classic_mode']:
return linewidths, dashes
# make sure they are the same length so we can zip them
if len(dashes) != len(linewidths):
l_dashes = len(dashes)
l_lw = len(linewidths)
gcd = math.gcd(l_dashes, l_lw)
dashes = list(dashes) * (l_lw // gcd)
linewidths = list(linewidths) * (l_dashes // gcd)
# scale the dash patters
dashes = [mlines._scale_dashes(o, d, lw)
for (o, d), lw in zip(dashes, linewidths)]
return linewidths, dashes
def set_antialiased(self, aa):
"""
Set the antialiasing state for rendering.
Parameters
----------
aa : bool or list of bools
"""
if aa is None:
aa = mpl.rcParams['patch.antialiased']
self._antialiaseds = np.atleast_1d(np.asarray(aa, bool))
self.stale = True
def set_color(self, c):
"""
Set both the edgecolor and the facecolor.
Parameters
----------
c : color or list of rgba tuples
See Also
--------
Collection.set_facecolor, Collection.set_edgecolor
For setting the edge or face color individually.
"""
self.set_facecolor(c)
self.set_edgecolor(c)
def _set_facecolor(self, c):
if c is None:
c = mpl.rcParams['patch.facecolor']
self._is_filled = True
try:
if c.lower() == 'none':
self._is_filled = False
except AttributeError:
pass
self._facecolors = mcolors.to_rgba_array(c, self._alpha)
self.stale = True
def set_facecolor(self, c):
"""
Set the facecolor(s) of the collection. *c* can be a color (all patches
have same color), or a sequence of colors; if it is a sequence the
patches will cycle through the sequence.
If *c* is 'none', the patch will not be filled.
Parameters
----------
c : color or list of colors
"""
self._original_facecolor = c
self._set_facecolor(c)
def get_facecolor(self):
return self._facecolors
def get_edgecolor(self):
if cbook._str_equal(self._edgecolors, 'face'):
return self.get_facecolor()
else:
return self._edgecolors
def _set_edgecolor(self, c):
set_hatch_color = True
if c is None:
if (mpl.rcParams['patch.force_edgecolor'] or
not self._is_filled or self._edge_default):
c = mpl.rcParams['patch.edgecolor']
else:
c = 'none'
set_hatch_color = False
self._is_stroked = True
try:
if c.lower() == 'none':
self._is_stroked = False
except AttributeError:
pass
try:
if c.lower() == 'face': # Special case: lookup in "get" method.
self._edgecolors = 'face'
return
except AttributeError:
pass
self._edgecolors = mcolors.to_rgba_array(c, self._alpha)
if set_hatch_color and len(self._edgecolors):
self._hatch_color = tuple(self._edgecolors[0])
self.stale = True
def set_edgecolor(self, c):
"""
Set the edgecolor(s) of the collection.
Parameters
----------
c : color or list of colors or 'face'
The collection edgecolor(s). If a sequence, the patches cycle
through it. If 'face', match the facecolor.
"""
self._original_edgecolor = c
self._set_edgecolor(c)
def set_alpha(self, alpha):
# docstring inherited
super().set_alpha(alpha)
self._update_dict['array'] = True
self._set_facecolor(self._original_facecolor)
self._set_edgecolor(self._original_edgecolor)
def get_linewidth(self):
return self._linewidths
def get_linestyle(self):
return self._linestyles
def update_scalarmappable(self):
"""Update colors from the scalar mappable array, if it is not None."""
if self._A is None:
return
# QuadMesh can map 2d arrays
if self._A.ndim > 1 and not isinstance(self, QuadMesh):
raise ValueError('Collections can only map rank 1 arrays')
if not self._check_update("array"):
return
if self._is_filled:
self._facecolors = self.to_rgba(self._A, self._alpha)
elif self._is_stroked:
self._edgecolors = self.to_rgba(self._A, self._alpha)
self.stale = True
def get_fill(self):
"""Return whether fill is set."""
return self._is_filled
def update_from(self, other):
"""Copy properties from other to self."""
artist.Artist.update_from(self, other)
self._antialiaseds = other._antialiaseds
self._original_edgecolor = other._original_edgecolor
self._edgecolors = other._edgecolors
self._original_facecolor = other._original_facecolor
self._facecolors = other._facecolors
self._linewidths = other._linewidths
self._linestyles = other._linestyles
self._us_linestyles = other._us_linestyles
self._pickradius = other._pickradius
self._hatch = other._hatch
# update_from for scalarmappable
self._A = other._A
self.norm = other.norm
self.cmap = other.cmap
# do we need to copy self._update_dict? -JJL
self.stale = True
class _CollectionWithSizes(Collection):
"""
Base class for collections that have an array of sizes.
"""
_factor = 1.0
def get_sizes(self):
"""
Return the sizes ('areas') of the elements in the collection.
Returns
-------
array
The 'area' of each element.
"""
return self._sizes
def set_sizes(self, sizes, dpi=72.0):
"""
Set the sizes of each member of the collection.
Parameters
----------
sizes : ndarray or None
The size to set for each element of the collection. The
value is the 'area' of the element.
dpi : float, default: 72
The dpi of the canvas.
"""
if sizes is None:
self._sizes = np.array([])
self._transforms = np.empty((0, 3, 3))
else:
self._sizes = np.asarray(sizes)
self._transforms = np.zeros((len(self._sizes), 3, 3))
scale = np.sqrt(self._sizes) * dpi / 72.0 * self._factor
self._transforms[:, 0, 0] = scale
self._transforms[:, 1, 1] = scale
self._transforms[:, 2, 2] = 1.0
self.stale = True
@artist.allow_rasterization
def draw(self, renderer):
self.set_sizes(self._sizes, self.figure.dpi)
Collection.draw(self, renderer)
class PathCollection(_CollectionWithSizes):
r"""
A collection of `~.path.Path`\s, as created by e.g. `~.Axes.scatter`.
"""
def __init__(self, paths, sizes=None, **kwargs):
"""
Parameters
----------
paths : list of `.path.Path`
The paths that will make up the `.Collection`.
sizes : array-like
The factor by which to scale each drawn `~.path.Path`. One unit
squared in the Path's data space is scaled to be ``sizes**2``
points when rendered.
**kwargs
Forwarded to `.Collection`.
"""
super().__init__(**kwargs)
self.set_paths(paths)
self.set_sizes(sizes)
self.stale = True
def set_paths(self, paths):
self._paths = paths
self.stale = True
def get_paths(self):
return self._paths
def legend_elements(self, prop="colors", num="auto",
fmt=None, func=lambda x: x, **kwargs):
"""
Create legend handles and labels for a PathCollection.
Each legend handle is a `.Line2D` representing the Path that was drawn,
and each label is a string what each Path represents.
This is useful for obtaining a legend for a `~.Axes.scatter` plot;
e.g.::
scatter = plt.scatter([1, 2, 3], [4, 5, 6], c=[7, 2, 3])
plt.legend(*scatter.legend_elements())
creates three legend elements, one for each color with the numerical
values passed to *c* as the labels.
Also see the :ref:`automatedlegendcreation` example.
Parameters
----------
prop : {"colors", "sizes"}, default: "colors"
If "colors", the legend handles will show the different colors of
the collection. If "sizes", the legend will show the different
sizes. To set both, use *kwargs* to directly edit the `.Line2D`
properties.
num : int, None, "auto" (default), array-like, or `~.ticker.Locator`,
Target number of elements to create.
If None, use all unique elements of the mappable array. If an
integer, target to use *num* elements in the normed range.
If *"auto"*, try to determine which option better suits the nature
of the data.
The number of created elements may slightly deviate from *num* due
to a `~.ticker.Locator` being used to find useful locations.
If a list or array, use exactly those elements for the legend.
Finally, a `~.ticker.Locator` can be provided.
fmt : str, `~matplotlib.ticker.Formatter`, or None (default)
The format or formatter to use for the labels. If a string must be
a valid input for a `~.StrMethodFormatter`. If None (the default),
use a `~.ScalarFormatter`.
func : function, default *lambda x: x*
Function to calculate the labels. Often the size (or color)
argument to `~.Axes.scatter` will have been pre-processed by the
user using a function ``s = f(x)`` to make the markers visible;
e.g. ``size = np.log10(x)``. Providing the inverse of this
function here allows that pre-processing to be inverted, so that
the legend labels have the correct values; e.g. ``func = lambda
x: 10**x``.
**kwargs
Allowed keyword arguments are *color* and *size*. E.g. it may be
useful to set the color of the markers if *prop="sizes"* is used;
similarly to set the size of the markers if *prop="colors"* is
used. Any further parameters are passed onto the `.Line2D`
instance. This may be useful to e.g. specify a different
*markeredgecolor* or *alpha* for the legend handles.
Returns
-------
handles : list of `.Line2D`
Visual representation of each element of the legend.
labels : list of str
The string labels for elements of the legend.
"""
handles = []
labels = []
hasarray = self.get_array() is not None
if fmt is None:
fmt = mpl.ticker.ScalarFormatter(useOffset=False, useMathText=True)
elif isinstance(fmt, str):
fmt = mpl.ticker.StrMethodFormatter(fmt)
fmt.create_dummy_axis()
if prop == "colors":
if not hasarray:
warnings.warn("Collection without array used. Make sure to "
"specify the values to be colormapped via the "
"`c` argument.")
return handles, labels
u = np.unique(self.get_array())
size = kwargs.pop("size", mpl.rcParams["lines.markersize"])
elif prop == "sizes":
u = np.unique(self.get_sizes())
color = kwargs.pop("color", "k")
else:
raise ValueError("Valid values for `prop` are 'colors' or "
f"'sizes'. You supplied '{prop}' instead.")
fmt.set_bounds(func(u).min(), func(u).max())
if num == "auto":
num = 9
if len(u) <= num:
num = None
if num is None:
values = u
label_values = func(values)
else:
if prop == "colors":
arr = self.get_array()
elif prop == "sizes":
arr = self.get_sizes()
if isinstance(num, mpl.ticker.Locator):
loc = num
elif np.iterable(num):
loc = mpl.ticker.FixedLocator(num)
else:
num = int(num)
loc = mpl.ticker.MaxNLocator(nbins=num, min_n_ticks=num-1,
steps=[1, 2, 2.5, 3, 5, 6, 8, 10])
label_values = loc.tick_values(func(arr).min(), func(arr).max())
cond = ((label_values >= func(arr).min()) &
(label_values <= func(arr).max()))
label_values = label_values[cond]
xarr = np.linspace(arr.min(), arr.max(), 256)
values = np.interp(label_values, func(xarr), xarr)
kw = dict(markeredgewidth=self.get_linewidths()[0],
alpha=self.get_alpha())
kw.update(kwargs)
for val, lab in zip(values, label_values):
if prop == "colors":
color = self.cmap(self.norm(val))
elif prop == "sizes":
size = np.sqrt(val)
if np.isclose(size, 0.0):
continue
h = mlines.Line2D([0], [0], ls="", color=color, ms=size,
marker=self.get_paths()[0], **kw)
handles.append(h)
if hasattr(fmt, "set_locs"):
fmt.set_locs(label_values)
l = fmt(lab)
labels.append(l)
return handles, labels
class PolyCollection(_CollectionWithSizes):
def __init__(self, verts, sizes=None, closed=True, **kwargs):
"""
Parameters
----------
verts : list of array-like
The sequence of polygons [*verts0*, *verts1*, ...] where each
element *verts_i* defines the vertices of polygon *i* as a 2D
array-like of shape (M, 2).
sizes : array-like, default: None
Squared scaling factors for the polygons. The coordinates of each
polygon *verts_i* are multiplied by the square-root of the
corresponding entry in *sizes* (i.e., *sizes* specify the scaling
of areas). The scaling is applied before the Artist master
transform.
closed : bool, default: True
Whether the polygon should be closed by adding a CLOSEPOLY
connection at the end.
**kwargs
Forwarded to `.Collection`.
"""
Collection.__init__(self, **kwargs)
self.set_sizes(sizes)
self.set_verts(verts, closed)
self.stale = True
def set_verts(self, verts, closed=True):
"""
Set the vertices of the polygons.
Parameters
----------
verts : list of array-like
The sequence of polygons [*verts0*, *verts1*, ...] where each
element *verts_i* defines the vertices of polygon *i* as a 2D
array-like of shape (M, 2).
closed : bool, default: True
Whether the polygon should be closed by adding a CLOSEPOLY
connection at the end.
"""
self.stale = True
if isinstance(verts, np.ma.MaskedArray):
verts = verts.astype(float).filled(np.nan)
# No need to do anything fancy if the path isn't closed.
if not closed:
self._paths = [mpath.Path(xy) for xy in verts]
return
# Fast path for arrays
if isinstance(verts, np.ndarray) and len(verts.shape) == 3:
verts_pad = np.concatenate((verts, verts[:, :1]), axis=1)
# Creating the codes once is much faster than having Path do it
# separately each time by passing closed=True.
codes = np.empty(verts_pad.shape[1], dtype=mpath.Path.code_type)
codes[:] = mpath.Path.LINETO
codes[0] = mpath.Path.MOVETO
codes[-1] = mpath.Path.CLOSEPOLY
self._paths = [mpath.Path(xy, codes) for xy in verts_pad]
return
self._paths = []
for xy in verts:
if len(xy):
if isinstance(xy, np.ma.MaskedArray):
xy = np.ma.concatenate([xy, xy[:1]])
else:
xy = np.concatenate([xy, xy[:1]])
self._paths.append(mpath.Path(xy, closed=True))
else:
self._paths.append(mpath.Path(xy))
set_paths = set_verts
def set_verts_and_codes(self, verts, codes):
"""Initialize vertices with path codes."""
if len(verts) != len(codes):
raise ValueError("'codes' must be a 1D list or array "
"with the same length of 'verts'")
self._paths = []
for xy, cds in zip(verts, codes):
if len(xy):
self._paths.append(mpath.Path(xy, cds))
else:
self._paths.append(mpath.Path(xy))
self.stale = True
class BrokenBarHCollection(PolyCollection):
"""
A collection of horizontal bars spanning *yrange* with a sequence of
*xranges*.
"""
def __init__(self, xranges, yrange, **kwargs):
"""
Parameters
----------
xranges : list of (float, float)
The sequence of (left-edge-position, width) pairs for each bar.
yrange : (float, float)
The (lower-edge, height) common to all bars.
**kwargs
Forwarded to `.Collection`.
"""
ymin, ywidth = yrange
ymax = ymin + ywidth
verts = [[(xmin, ymin),
(xmin, ymax),
(xmin + xwidth, ymax),
(xmin + xwidth, ymin),
(xmin, ymin)] for xmin, xwidth in xranges]
PolyCollection.__init__(self, verts, **kwargs)
@classmethod
def span_where(cls, x, ymin, ymax, where, **kwargs):
"""
Return a `.BrokenBarHCollection` that plots horizontal bars from
over the regions in *x* where *where* is True. The bars range
on the y-axis from *ymin* to *ymax*
*kwargs* are passed on to the collection.
"""
xranges = []
for ind0, ind1 in cbook.contiguous_regions(where):
xslice = x[ind0:ind1]
if not len(xslice):
continue
xranges.append((xslice[0], xslice[-1] - xslice[0]))
return cls(xranges, [ymin, ymax - ymin], **kwargs)
class RegularPolyCollection(_CollectionWithSizes):
"""A collection of n-sided regular polygons."""
_path_generator = mpath.Path.unit_regular_polygon
_factor = np.pi ** (-1/2)
def __init__(self,
numsides,
rotation=0,
sizes=(1,),
**kwargs):
"""
Parameters
----------
numsides : int
The number of sides of the polygon.
rotation : float
The rotation of the polygon in radians.
sizes : tuple of float
The area of the circle circumscribing the polygon in points^2.
**kwargs
Forwarded to `.Collection`.
Examples
--------
See :doc:`/gallery/event_handling/lasso_demo` for a complete example::
offsets = np.random.rand(20, 2)
facecolors = [cm.jet(x) for x in np.random.rand(20)]
collection = RegularPolyCollection(
numsides=5, # a pentagon
rotation=0, sizes=(50,),
facecolors=facecolors,
edgecolors=("black",),
linewidths=(1,),
offsets=offsets,
transOffset=ax.transData,
)
"""
Collection.__init__(self, **kwargs)
self.set_sizes(sizes)
self._numsides = numsides
self._paths = [self._path_generator(numsides)]
self._rotation = rotation
self.set_transform(transforms.IdentityTransform())
def get_numsides(self):
return self._numsides
def get_rotation(self):
return self._rotation
@artist.allow_rasterization
def draw(self, renderer):
self.set_sizes(self._sizes, self.figure.dpi)
self._transforms = [
transforms.Affine2D(x).rotate(-self._rotation).get_matrix()
for x in self._transforms
]
Collection.draw(self, renderer)
class StarPolygonCollection(RegularPolyCollection):
"""Draw a collection of regular stars with *numsides* points."""
_path_generator = mpath.Path.unit_regular_star
class AsteriskPolygonCollection(RegularPolyCollection):
"""Draw a collection of regular asterisks with *numsides* points."""
_path_generator = mpath.Path.unit_regular_asterisk
class LineCollection(Collection):
r"""
Represents a sequence of `.Line2D`\s that should be drawn together.
This class extends `.Collection` to represent a sequence of
`~.Line2D`\s instead of just a sequence of `~.Patch`\s.
Just as in `.Collection`, each property of a *LineCollection* may be either
a single value or a list of values. This list is then used cyclically for
each element of the LineCollection, so the property of the ``i``\th element
of the collection is::
prop[i % len(prop)]
The properties of each member of a *LineCollection* default to their values
in :rc:`lines.*` instead of :rc:`patch.*`, and the property *colors* is
added in place of *edgecolors*.
"""
_edge_default = True
def __init__(self, segments, # Can be None.
linewidths=None,
colors=None,
antialiaseds=None,
linestyles='solid',
offsets=None,
transOffset=None,
norm=None,
cmap=None,
pickradius=5,
zorder=2,
facecolors='none',
**kwargs
):
"""
Parameters
----------
segments: list of array-like
A sequence of (*line0*, *line1*, *line2*), where::
linen = (x0, y0), (x1, y1), ... (xm, ym)
or the equivalent numpy array with two columns. Each line
can have a different number of segments.
linewidths : float or list of float, default: :rc:`lines.linewidth`
The width of each line in points.
colors : color or list of color, default: :rc:`lines.color`
A sequence of RGBA tuples (e.g., arbitrary color strings, etc, not
allowed).
antialiaseds : bool or list of bool, default: :rc:`lines.antialiased`
Whether to use antialiasing for each line.
zorder : int, default: 2
zorder of the lines once drawn.
facecolors : color or list of color, default: 'none'
The facecolors of the LineCollection.
Setting to a value other than 'none' will lead to each line being
"filled in" as if there was an implicit line segment joining the
last and first points of that line back around to each other. In
order to manually specify what should count as the "interior" of
each line, please use `.PathCollection` instead, where the
"interior" can be specified by appropriate usage of
`~.path.Path.CLOSEPOLY`.
**kwargs
Forwareded to `.Collection`.
"""
if colors is None:
colors = mpl.rcParams['lines.color']
if linewidths is None:
linewidths = (mpl.rcParams['lines.linewidth'],)
if antialiaseds is None:
antialiaseds = (mpl.rcParams['lines.antialiased'],)
colors = mcolors.to_rgba_array(colors)
Collection.__init__(
self,
edgecolors=colors,
facecolors=facecolors,
linewidths=linewidths,
linestyles=linestyles,
antialiaseds=antialiaseds,
offsets=offsets,
transOffset=transOffset,
norm=norm,
cmap=cmap,
zorder=zorder,
**kwargs)
self.set_segments(segments)
def set_segments(self, segments):
if segments is None:
return
_segments = []
for seg in segments:
if not isinstance(seg, np.ma.MaskedArray):
seg = np.asarray(seg, float)
_segments.append(seg)
if self._uniform_offsets is not None:
_segments = self._add_offsets(_segments)
self._paths = [mpath.Path(_seg) for _seg in _segments]
self.stale = True
set_verts = set_segments # for compatibility with PolyCollection
set_paths = set_segments
def get_segments(self):
"""
Returns
-------
list
List of segments in the LineCollection. Each list item contains an
array of vertices.
"""
segments = []
for path in self._paths:
vertices = [vertex for vertex, _ in path.iter_segments()]
vertices = np.asarray(vertices)
segments.append(vertices)
return segments
def _add_offsets(self, segs):
offsets = self._uniform_offsets
Nsegs = len(segs)
Noffs = offsets.shape[0]
if Noffs == 1:
for i in range(Nsegs):
segs[i] = segs[i] + i * offsets
else:
for i in range(Nsegs):
io = i % Noffs
segs[i] = segs[i] + offsets[io:io + 1]
return segs
def set_color(self, c):
"""
Set the color(s) of the LineCollection.
Parameters
----------
c : color or list of colors
Single color (all patches have same color), or a
sequence of rgba tuples; if it is a sequence the patches will
cycle through the sequence.
"""
self.set_edgecolor(c)
self.stale = True
def get_color(self):
return self._edgecolors
get_colors = get_color # for compatibility with old versions
class EventCollection(LineCollection):
"""
A collection of locations along a single axis at which an "event" occured.
The events are given by a 1-dimensional array. They do not have an
amplitude and are displayed as parallel lines.
"""
_edge_default = True
def __init__(self,
positions, # Cannot be None.
orientation='horizontal',
lineoffset=0,
linelength=1,
linewidth=None,
color=None,
linestyle='solid',
antialiased=None,
**kwargs
):
"""
Parameters
----------
positions : 1D array-like
Each value is an event.
orientation : {'horizontal', 'vertical'}, default: 'horizontal'
The sequence of events is plotted along this direction.
The marker lines of the single events are along the orthogonal
direction.
lineoffset : float, default: 0
The offset of the center of the markers from the origin, in the
direction orthogonal to *orientation*.
linelength : float, default: 1
The total height of the marker (i.e. the marker stretches from
``lineoffset - linelength/2`` to ``lineoffset + linelength/2``).
linewidth : float or list thereof, default: :rc:`lines.linewidth`
The line width of the event lines, in points.
color : color or list of colors, default: :rc:`lines.color`
The color of the event lines.
linestyle : str or tuple or list thereof, default: 'solid'
Valid strings are ['solid', 'dashed', 'dashdot', 'dotted',
'-', '--', '-.', ':']. Dash tuples should be of the form::
(offset, onoffseq),
where *onoffseq* is an even length tuple of on and off ink
in points.
antialiased : bool or list thereof, default: :rc:`lines.antialiased`
Whether to use antialiasing for drawing the lines.
**kwargs
Forwarded to `.LineCollection`.
Examples
--------
.. plot:: gallery/lines_bars_and_markers/eventcollection_demo.py
"""
LineCollection.__init__(self,
[],
linewidths=linewidth,
colors=color,
antialiaseds=antialiased,
linestyles=linestyle,
**kwargs)
self._is_horizontal = True # Initial value, may be switched below.
self._linelength = linelength
self._lineoffset = lineoffset
self.set_orientation(orientation)
self.set_positions(positions)
def get_positions(self):
"""
Return an array containing the floating-point values of the positions.
"""
pos = 0 if self.is_horizontal() else 1
return [segment[0, pos] for segment in self.get_segments()]
def set_positions(self, positions):
"""Set the positions of the events."""
if positions is None:
positions = []
if np.ndim(positions) != 1:
raise ValueError('positions must be one-dimensional')
lineoffset = self.get_lineoffset()
linelength = self.get_linelength()
pos_idx = 0 if self.is_horizontal() else 1
segments = np.empty((len(positions), 2, 2))
segments[:, :, pos_idx] = np.sort(positions)[:, None]
segments[:, 0, 1 - pos_idx] = lineoffset + linelength / 2
segments[:, 1, 1 - pos_idx] = lineoffset - linelength / 2
self.set_segments(segments)
def add_positions(self, position):
"""Add one or more events at the specified positions."""
if position is None or (hasattr(position, 'len') and
len(position) == 0):
return
positions = self.get_positions()
positions = np.hstack([positions, np.asanyarray(position)])
self.set_positions(positions)
extend_positions = append_positions = add_positions
def is_horizontal(self):
"""True if the eventcollection is horizontal, False if vertical."""
return self._is_horizontal
def get_orientation(self):
"""
Return the orientation of the event line ('horizontal' or 'vertical').
"""
return 'horizontal' if self.is_horizontal() else 'vertical'
def switch_orientation(self):
"""
Switch the orientation of the event line, either from vertical to
horizontal or vice versus.
"""
segments = self.get_segments()
for i, segment in enumerate(segments):
segments[i] = np.fliplr(segment)
self.set_segments(segments)
self._is_horizontal = not self.is_horizontal()
self.stale = True
def set_orientation(self, orientation=None):
"""
Set the orientation of the event line.
Parameters
----------
orientation : {'horizontal', 'vertical'}
"""
try:
is_horizontal = cbook._check_getitem(
{"horizontal": True, "vertical": False},
orientation=orientation)
except ValueError:
if (orientation is None or orientation.lower() == "none"
or orientation.lower() == "horizontal"):
is_horizontal = True
elif orientation.lower() == "vertical":
is_horizontal = False
else:
raise
normalized = "horizontal" if is_horizontal else "vertical"
cbook.warn_deprecated(
"3.3", message="Support for setting the orientation of "
f"EventCollection to {orientation!r} is deprecated since "
f"%(since)s and will be removed %(removal)s; please set it to "
f"{normalized!r} instead.")
if is_horizontal == self.is_horizontal():
return
self.switch_orientation()
def get_linelength(self):
"""Return the length of the lines used to mark each event."""
return self._linelength
def set_linelength(self, linelength):
"""Set the length of the lines used to mark each event."""
if linelength == self.get_linelength():
return
lineoffset = self.get_lineoffset()
segments = self.get_segments()
pos = 1 if self.is_horizontal() else 0
for segment in segments:
segment[0, pos] = lineoffset + linelength / 2.
segment[1, pos] = lineoffset - linelength / 2.
self.set_segments(segments)
self._linelength = linelength
def get_lineoffset(self):
"""Return the offset of the lines used to mark each event."""
return self._lineoffset
def set_lineoffset(self, lineoffset):
"""Set the offset of the lines used to mark each event."""
if lineoffset == self.get_lineoffset():
return
linelength = self.get_linelength()
segments = self.get_segments()
pos = 1 if self.is_horizontal() else 0
for segment in segments:
segment[0, pos] = lineoffset + linelength / 2.
segment[1, pos] = lineoffset - linelength / 2.
self.set_segments(segments)
self._lineoffset = lineoffset
def get_linewidth(self):
"""Get the width of the lines used to mark each event."""
return super(EventCollection, self).get_linewidth()[0]
def get_linewidths(self):
return super(EventCollection, self).get_linewidth()
def get_color(self):
"""Return the color of the lines used to mark each event."""
return self.get_colors()[0]
class CircleCollection(_CollectionWithSizes):
"""A collection of circles, drawn using splines."""
_factor = np.pi ** (-1/2)
def __init__(self, sizes, **kwargs):
"""
Parameters
----------
sizes : float or array-like
The area of each circle in points^2.
**kwargs
Forwarded to `.Collection`.
"""
Collection.__init__(self, **kwargs)
self.set_sizes(sizes)
self.set_transform(transforms.IdentityTransform())
self._paths = [mpath.Path.unit_circle()]
class EllipseCollection(Collection):
"""A collection of ellipses, drawn using splines."""
def __init__(self, widths, heights, angles, units='points', **kwargs):
"""
Parameters
----------
widths : array-like
The lengths of the first axes (e.g., major axis lengths).
heights : array-like
The lengths of second axes.
angles : array-like
The angles of the first axes, degrees CCW from the x-axis.
units : {'points', 'inches', 'dots', 'width', 'height', 'x', 'y', 'xy'}
The units in which majors and minors are given; 'width' and
'height' refer to the dimensions of the axes, while 'x' and 'y'
refer to the *offsets* data units. 'xy' differs from all others in
that the angle as plotted varies with the aspect ratio, and equals
the specified angle only when the aspect ratio is unity. Hence
it behaves the same as the `~.patches.Ellipse` with
``axes.transData`` as its transform.
**kwargs
Forwarded to `Collection`.
"""
Collection.__init__(self, **kwargs)
self._widths = 0.5 * np.asarray(widths).ravel()
self._heights = 0.5 * np.asarray(heights).ravel()
self._angles = np.deg2rad(angles).ravel()
self._units = units
self.set_transform(transforms.IdentityTransform())
self._transforms = np.empty((0, 3, 3))
self._paths = [mpath.Path.unit_circle()]
def _set_transforms(self):
"""Calculate transforms immediately before drawing."""
ax = self.axes
fig = self.figure
if self._units == 'xy':
sc = 1
elif self._units == 'x':
sc = ax.bbox.width / ax.viewLim.width
elif self._units == 'y':
sc = ax.bbox.height / ax.viewLim.height
elif self._units == 'inches':
sc = fig.dpi
elif self._units == 'points':
sc = fig.dpi / 72.0
elif self._units == 'width':
sc = ax.bbox.width
elif self._units == 'height':
sc = ax.bbox.height
elif self._units == 'dots':
sc = 1.0
else:
raise ValueError('unrecognized units: %s' % self._units)
self._transforms = np.zeros((len(self._widths), 3, 3))
widths = self._widths * sc
heights = self._heights * sc
sin_angle = np.sin(self._angles)
cos_angle = np.cos(self._angles)
self._transforms[:, 0, 0] = widths * cos_angle
self._transforms[:, 0, 1] = heights * -sin_angle
self._transforms[:, 1, 0] = widths * sin_angle
self._transforms[:, 1, 1] = heights * cos_angle
self._transforms[:, 2, 2] = 1.0
_affine = transforms.Affine2D
if self._units == 'xy':
m = ax.transData.get_affine().get_matrix().copy()
m[:2, 2:] = 0
self.set_transform(_affine(m))
@artist.allow_rasterization
def draw(self, renderer):
self._set_transforms()
Collection.draw(self, renderer)
class PatchCollection(Collection):
"""
A generic collection of patches.
This makes it easier to assign a color map to a heterogeneous
collection of patches.
This also may improve plotting speed, since PatchCollection will
draw faster than a large number of patches.
"""
def __init__(self, patches, match_original=False, **kwargs):
"""
*patches*
a sequence of Patch objects. This list may include
a heterogeneous assortment of different patch types.
*match_original*
If True, use the colors and linewidths of the original
patches. If False, new colors may be assigned by
providing the standard collection arguments, facecolor,
edgecolor, linewidths, norm or cmap.
If any of *edgecolors*, *facecolors*, *linewidths*, *antialiaseds* are
None, they default to their `.rcParams` patch setting, in sequence
form.
The use of `~matplotlib.cm.ScalarMappable` functionality is optional.
If the `~matplotlib.cm.ScalarMappable` matrix ``_A`` has been set (via
a call to `~.ScalarMappable.set_array`), at draw time a call to scalar
mappable will be made to set the face colors.
"""
if match_original:
def determine_facecolor(patch):
if patch.get_fill():
return patch.get_facecolor()
return [0, 0, 0, 0]
kwargs['facecolors'] = [determine_facecolor(p) for p in patches]
kwargs['edgecolors'] = [p.get_edgecolor() for p in patches]
kwargs['linewidths'] = [p.get_linewidth() for p in patches]
kwargs['linestyles'] = [p.get_linestyle() for p in patches]
kwargs['antialiaseds'] = [p.get_antialiased() for p in patches]
Collection.__init__(self, **kwargs)
self.set_paths(patches)
def set_paths(self, patches):
paths = [p.get_transform().transform_path(p.get_path())
for p in patches]
self._paths = paths
class TriMesh(Collection):
"""
Class for the efficient drawing of a triangular mesh using Gouraud shading.
A triangular mesh is a `~matplotlib.tri.Triangulation` object.
"""
def __init__(self, triangulation, **kwargs):
Collection.__init__(self, **kwargs)
self._triangulation = triangulation
self._shading = 'gouraud'
self._is_filled = True
self._bbox = transforms.Bbox.unit()
# Unfortunately this requires a copy, unless Triangulation
# was rewritten.
xy = np.hstack((triangulation.x.reshape(-1, 1),
triangulation.y.reshape(-1, 1)))
self._bbox.update_from_data_xy(xy)
def get_paths(self):
if self._paths is None:
self.set_paths()
return self._paths
def set_paths(self):
self._paths = self.convert_mesh_to_paths(self._triangulation)
@staticmethod
def convert_mesh_to_paths(tri):
"""
Convert a given mesh into a sequence of `~.Path` objects.
This function is primarily of use to implementers of backends that do
not directly support meshes.
"""
triangles = tri.get_masked_triangles()
verts = np.stack((tri.x[triangles], tri.y[triangles]), axis=-1)
return [mpath.Path(x) for x in verts]
@artist.allow_rasterization
def draw(self, renderer):
if not self.get_visible():
return
renderer.open_group(self.__class__.__name__, gid=self.get_gid())
transform = self.get_transform()
# Get a list of triangles and the color at each vertex.
tri = self._triangulation
triangles = tri.get_masked_triangles()
verts = np.stack((tri.x[triangles], tri.y[triangles]), axis=-1)
self.update_scalarmappable()
colors = self._facecolors[triangles]
gc = renderer.new_gc()
self._set_gc_clip(gc)
gc.set_linewidth(self.get_linewidth()[0])
renderer.draw_gouraud_triangles(gc, verts, colors, transform.frozen())
gc.restore()
renderer.close_group(self.__class__.__name__)
class QuadMesh(Collection):
"""
Class for the efficient drawing of a quadrilateral mesh.
A quadrilateral mesh consists of a grid of vertices.
The dimensions of this array are (*meshWidth* + 1, *meshHeight* + 1).
Each vertex in the mesh has a different set of "mesh coordinates"
representing its position in the topology of the mesh.
For any values (*m*, *n*) such that 0 <= *m* <= *meshWidth*
and 0 <= *n* <= *meshHeight*, the vertices at mesh coordinates
(*m*, *n*), (*m*, *n* + 1), (*m* + 1, *n* + 1), and (*m* + 1, *n*)
form one of the quadrilaterals in the mesh. There are thus
(*meshWidth* * *meshHeight*) quadrilaterals in the mesh. The mesh
need not be regular and the polygons need not be convex.
A quadrilateral mesh is represented by a (2 x ((*meshWidth* + 1) *
(*meshHeight* + 1))) numpy array *coordinates*, where each row is
the *x* and *y* coordinates of one of the vertices. To define the
function that maps from a data point to its corresponding color,
use the :meth:`set_cmap` method. Each of these arrays is indexed in
row-major order by the mesh coordinates of the vertex (or the mesh
coordinates of the lower left vertex, in the case of the colors).
For example, the first entry in *coordinates* is the coordinates of the
vertex at mesh coordinates (0, 0), then the one at (0, 1), then at (0, 2)
.. (0, meshWidth), (1, 0), (1, 1), and so on.
*shading* may be 'flat', or 'gouraud'
"""
def __init__(self, meshWidth, meshHeight, coordinates,
antialiased=True, shading='flat', **kwargs):
Collection.__init__(self, **kwargs)
self._meshWidth = meshWidth
self._meshHeight = meshHeight
# By converting to floats now, we can avoid that on every draw.
self._coordinates = np.asarray(coordinates, float).reshape(
(meshHeight + 1, meshWidth + 1, 2))
self._antialiased = antialiased
self._shading = shading
self._bbox = transforms.Bbox.unit()
self._bbox.update_from_data_xy(coordinates.reshape(
((meshWidth + 1) * (meshHeight + 1), 2)))
def get_paths(self):
if self._paths is None:
self.set_paths()
return self._paths
def set_paths(self):
self._paths = self.convert_mesh_to_paths(
self._meshWidth, self._meshHeight, self._coordinates)
self.stale = True
def get_datalim(self, transData):
return (self.get_transform() - transData).transform_bbox(self._bbox)
@staticmethod
def convert_mesh_to_paths(meshWidth, meshHeight, coordinates):
"""
Convert a given mesh into a sequence of `~.Path` objects.
This function is primarily of use to implementers of backends that do
not directly support quadmeshes.
"""
if isinstance(coordinates, np.ma.MaskedArray):
c = coordinates.data
else:
c = coordinates
points = np.concatenate((
c[:-1, :-1],
c[:-1, 1:],
c[1:, 1:],
c[1:, :-1],
c[:-1, :-1]
), axis=2)
points = points.reshape((meshWidth * meshHeight, 5, 2))
return [mpath.Path(x) for x in points]
def convert_mesh_to_triangles(self, meshWidth, meshHeight, coordinates):
"""
Convert a given mesh into a sequence of triangles, each point
with its own color. This is useful for experiments using
`~.RendererBase.draw_gouraud_triangle`.
"""
if isinstance(coordinates, np.ma.MaskedArray):
p = coordinates.data
else:
p = coordinates
p_a = p[:-1, :-1]
p_b = p[:-1, 1:]
p_c = p[1:, 1:]
p_d = p[1:, :-1]
p_center = (p_a + p_b + p_c + p_d) / 4.0
triangles = np.concatenate((
p_a, p_b, p_center,
p_b, p_c, p_center,
p_c, p_d, p_center,
p_d, p_a, p_center,
), axis=2)
triangles = triangles.reshape((meshWidth * meshHeight * 4, 3, 2))
c = self.get_facecolor().reshape((meshHeight + 1, meshWidth + 1, 4))
c_a = c[:-1, :-1]
c_b = c[:-1, 1:]
c_c = c[1:, 1:]
c_d = c[1:, :-1]
c_center = (c_a + c_b + c_c + c_d) / 4.0
colors = np.concatenate((
c_a, c_b, c_center,
c_b, c_c, c_center,
c_c, c_d, c_center,
c_d, c_a, c_center,
), axis=2)
colors = colors.reshape((meshWidth * meshHeight * 4, 3, 4))
return triangles, colors
@artist.allow_rasterization
def draw(self, renderer):
if not self.get_visible():
return
renderer.open_group(self.__class__.__name__, self.get_gid())
transform = self.get_transform()
transOffset = self.get_offset_transform()
offsets = self._offsets
if self.have_units():
if len(self._offsets):
xs = self.convert_xunits(self._offsets[:, 0])
ys = self.convert_yunits(self._offsets[:, 1])
offsets = np.column_stack([xs, ys])
self.update_scalarmappable()
if not transform.is_affine:
coordinates = self._coordinates.reshape((-1, 2))
coordinates = transform.transform(coordinates)
coordinates = coordinates.reshape(self._coordinates.shape)
transform = transforms.IdentityTransform()
else:
coordinates = self._coordinates
if not transOffset.is_affine:
offsets = transOffset.transform_non_affine(offsets)
transOffset = transOffset.get_affine()
gc = renderer.new_gc()
self._set_gc_clip(gc)
gc.set_linewidth(self.get_linewidth()[0])
if self._shading == 'gouraud':
triangles, colors = self.convert_mesh_to_triangles(
self._meshWidth, self._meshHeight, coordinates)
renderer.draw_gouraud_triangles(
gc, triangles, colors, transform.frozen())
else:
renderer.draw_quad_mesh(
gc, transform.frozen(), self._meshWidth, self._meshHeight,
coordinates, offsets, transOffset,
# Backends expect flattened rgba arrays (n*m, 4) for fc and ec
self.get_facecolor().reshape((-1, 4)),
self._antialiased, self.get_edgecolors().reshape((-1, 4)))
gc.restore()
renderer.close_group(self.__class__.__name__)
self.stale = False
patchstr = artist.kwdoc(Collection)
for k in ('QuadMesh', 'TriMesh', 'PolyCollection', 'BrokenBarHCollection',
'RegularPolyCollection', 'PathCollection',
'StarPolygonCollection', 'PatchCollection',
'CircleCollection', 'Collection',):
docstring.interpd.update({k: patchstr})
docstring.interpd.update(LineCollection=artist.kwdoc(LineCollection))