test_cbook.py 24.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
import itertools
import pickle
import re

from weakref import ref
from unittest.mock import patch, Mock

from datetime import datetime

import numpy as np
from numpy.testing import (assert_array_equal, assert_approx_equal,
                           assert_array_almost_equal)
import pytest

import matplotlib.cbook as cbook
import matplotlib.colors as mcolors
from matplotlib.cbook import MatplotlibDeprecationWarning, delete_masked_points


class Test_delete_masked_points:
    def test_bad_first_arg(self):
        with pytest.raises(ValueError):
            delete_masked_points('a string', np.arange(1.0, 7.0))

    def test_string_seq(self):
        a1 = ['a', 'b', 'c', 'd', 'e', 'f']
        a2 = [1, 2, 3, np.nan, np.nan, 6]
        result1, result2 = delete_masked_points(a1, a2)
        ind = [0, 1, 2, 5]
        assert_array_equal(result1, np.array(a1)[ind])
        assert_array_equal(result2, np.array(a2)[ind])

    def test_datetime(self):
        dates = [datetime(2008, 1, 1), datetime(2008, 1, 2),
                 datetime(2008, 1, 3), datetime(2008, 1, 4),
                 datetime(2008, 1, 5), datetime(2008, 1, 6)]
        a_masked = np.ma.array([1, 2, 3, np.nan, np.nan, 6],
                               mask=[False, False, True, True, False, False])
        actual = delete_masked_points(dates, a_masked)
        ind = [0, 1, 5]
        assert_array_equal(actual[0], np.array(dates)[ind])
        assert_array_equal(actual[1], a_masked[ind].compressed())

    def test_rgba(self):
        a_masked = np.ma.array([1, 2, 3, np.nan, np.nan, 6],
                               mask=[False, False, True, True, False, False])
        a_rgba = mcolors.to_rgba_array(['r', 'g', 'b', 'c', 'm', 'y'])
        actual = delete_masked_points(a_masked, a_rgba)
        ind = [0, 1, 5]
        assert_array_equal(actual[0], a_masked[ind].compressed())
        assert_array_equal(actual[1], a_rgba[ind])


class Test_boxplot_stats:
    def setup(self):
        np.random.seed(937)
        self.nrows = 37
        self.ncols = 4
        self.data = np.random.lognormal(size=(self.nrows, self.ncols),
                                        mean=1.5, sigma=1.75)
        self.known_keys = sorted([
            'mean', 'med', 'q1', 'q3', 'iqr',
            'cilo', 'cihi', 'whislo', 'whishi',
            'fliers', 'label'
        ])
        self.std_results = cbook.boxplot_stats(self.data)

        self.known_nonbootstrapped_res = {
            'cihi': 6.8161283264444847,
            'cilo': -0.1489815330368689,
            'iqr': 13.492709959447094,
            'mean': 13.00447442387868,
            'med': 3.3335733967038079,
            'fliers': np.array([
                92.55467075,  87.03819018,  42.23204914,  39.29390996
            ]),
            'q1': 1.3597529879465153,
            'q3': 14.85246294739361,
            'whishi': 27.899688243699629,
            'whislo': 0.042143774965502923
        }

        self.known_bootstrapped_ci = {
            'cihi': 8.939577523357828,
            'cilo': 1.8692703958676578,
        }

        self.known_whis3_res = {
            'whishi': 42.232049135969874,
            'whislo': 0.042143774965502923,
            'fliers': np.array([92.55467075, 87.03819018]),
        }

        self.known_res_percentiles = {
            'whislo':   0.1933685896907924,
            'whishi':  42.232049135969874
        }

        self.known_res_range = {
            'whislo': 0.042143774965502923,
            'whishi': 92.554670752188699

        }

    def test_form_main_list(self):
        assert isinstance(self.std_results, list)

    def test_form_each_dict(self):
        for res in self.std_results:
            assert isinstance(res, dict)

    def test_form_dict_keys(self):
        for res in self.std_results:
            assert set(res) <= set(self.known_keys)

    def test_results_baseline(self):
        res = self.std_results[0]
        for key, value in self.known_nonbootstrapped_res.items():
            assert_array_almost_equal(res[key], value)

    def test_results_bootstrapped(self):
        results = cbook.boxplot_stats(self.data, bootstrap=10000)
        res = results[0]
        for key, value in self.known_bootstrapped_ci.items():
            assert_approx_equal(res[key], value)

    def test_results_whiskers_float(self):
        results = cbook.boxplot_stats(self.data, whis=3)
        res = results[0]
        for key, value in self.known_whis3_res.items():
            assert_array_almost_equal(res[key], value)

    def test_results_whiskers_range(self):
        results = cbook.boxplot_stats(self.data, whis=[0, 100])
        res = results[0]
        for key, value in self.known_res_range.items():
            assert_array_almost_equal(res[key], value)

    def test_results_whiskers_percentiles(self):
        results = cbook.boxplot_stats(self.data, whis=[5, 95])
        res = results[0]
        for key, value in self.known_res_percentiles.items():
            assert_array_almost_equal(res[key], value)

    def test_results_withlabels(self):
        labels = ['Test1', 2, 'ardvark', 4]
        results = cbook.boxplot_stats(self.data, labels=labels)
        res = results[0]
        for lab, res in zip(labels, results):
            assert res['label'] == lab

        results = cbook.boxplot_stats(self.data)
        for res in results:
            assert 'label' not in res

    def test_label_error(self):
        labels = [1, 2]
        with pytest.raises(ValueError):
            cbook.boxplot_stats(self.data, labels=labels)

    def test_bad_dims(self):
        data = np.random.normal(size=(34, 34, 34))
        with pytest.raises(ValueError):
            cbook.boxplot_stats(data)

    def test_boxplot_stats_autorange_false(self):
        x = np.zeros(shape=140)
        x = np.hstack([-25, x, 25])
        bstats_false = cbook.boxplot_stats(x, autorange=False)
        bstats_true = cbook.boxplot_stats(x, autorange=True)

        assert bstats_false[0]['whislo'] == 0
        assert bstats_false[0]['whishi'] == 0
        assert_array_almost_equal(bstats_false[0]['fliers'], [-25, 25])

        assert bstats_true[0]['whislo'] == -25
        assert bstats_true[0]['whishi'] == 25
        assert_array_almost_equal(bstats_true[0]['fliers'], [])


class Test_callback_registry:
    def setup(self):
        self.signal = 'test'
        self.callbacks = cbook.CallbackRegistry()

    def connect(self, s, func):
        return self.callbacks.connect(s, func)

    def is_empty(self):
        assert self.callbacks._func_cid_map == {}
        assert self.callbacks.callbacks == {}

    def is_not_empty(self):
        assert self.callbacks._func_cid_map != {}
        assert self.callbacks.callbacks != {}

    def test_callback_complete(self):
        # ensure we start with an empty registry
        self.is_empty()

        # create a class for testing
        mini_me = Test_callback_registry()

        # test that we can add a callback
        cid1 = self.connect(self.signal, mini_me.dummy)
        assert type(cid1) == int
        self.is_not_empty()

        # test that we don't add a second callback
        cid2 = self.connect(self.signal, mini_me.dummy)
        assert cid1 == cid2
        self.is_not_empty()
        assert len(self.callbacks._func_cid_map) == 1
        assert len(self.callbacks.callbacks) == 1

        del mini_me

        # check we now have no callbacks registered
        self.is_empty()

    def dummy(self):
        pass

    def test_pickling(self):
        assert hasattr(pickle.loads(pickle.dumps(cbook.CallbackRegistry())),
                       "callbacks")


def test_callbackregistry_default_exception_handler(monkeypatch):
    cb = cbook.CallbackRegistry()
    cb.connect("foo", lambda: None)
    monkeypatch.setattr(
        cbook, "_get_running_interactive_framework", lambda: None)
    with pytest.raises(TypeError):
        cb.process("foo", "argument mismatch")
    monkeypatch.setattr(
        cbook, "_get_running_interactive_framework", lambda: "not-none")
    cb.process("foo", "argument mismatch")  # No error in that case.


def raising_cb_reg(func):
    class TestException(Exception):
        pass

    def raising_function():
        raise RuntimeError

    def raising_function_VE():
        raise ValueError

    def transformer(excp):
        if isinstance(excp, RuntimeError):
            raise TestException
        raise excp

    # old default
    cb_old = cbook.CallbackRegistry(exception_handler=None)
    cb_old.connect('foo', raising_function)

    # filter
    cb_filt = cbook.CallbackRegistry(exception_handler=transformer)
    cb_filt.connect('foo', raising_function)

    # filter
    cb_filt_pass = cbook.CallbackRegistry(exception_handler=transformer)
    cb_filt_pass.connect('foo', raising_function_VE)

    return pytest.mark.parametrize('cb, excp',
                                   [[cb_old, RuntimeError],
                                    [cb_filt, TestException],
                                    [cb_filt_pass, ValueError]])(func)


@raising_cb_reg
def test_callbackregistry_custom_exception_handler(monkeypatch, cb, excp):
    monkeypatch.setattr(
        cbook, "_get_running_interactive_framework", lambda: None)
    with pytest.raises(excp):
        cb.process('foo')


def test_sanitize_sequence():
    d = {'a': 1, 'b': 2, 'c': 3}
    k = ['a', 'b', 'c']
    v = [1, 2, 3]
    i = [('a', 1), ('b', 2), ('c', 3)]
    assert k == sorted(cbook.sanitize_sequence(d.keys()))
    assert v == sorted(cbook.sanitize_sequence(d.values()))
    assert i == sorted(cbook.sanitize_sequence(d.items()))
    assert i == cbook.sanitize_sequence(i)
    assert k == cbook.sanitize_sequence(k)


fail_mapping = (
    ({'a': 1}, {'forbidden': ('a')}),
    ({'a': 1}, {'required': ('b')}),
    ({'a': 1, 'b': 2}, {'required': ('a'), 'allowed': ()}),
    ({'a': 1, 'b': 2}, {'alias_mapping': {'a': ['b']}}),
    ({'a': 1, 'b': 2}, {'alias_mapping': {'a': ['b']}, 'allowed': ('a',)}),
    ({'a': 1, 'b': 2}, {'alias_mapping': {'a': ['a', 'b']}}),
    ({'a': 1, 'b': 2, 'c': 3},
     {'alias_mapping': {'a': ['b']}, 'required': ('a', )}),
)

pass_mapping = (
    ({'a': 1, 'b': 2}, {'a': 1, 'b': 2}, {}),
    ({'b': 2}, {'a': 2}, {'alias_mapping': {'a': ['a', 'b']}}),
    ({'b': 2}, {'a': 2},
     {'alias_mapping': {'a': ['b']}, 'forbidden': ('b', )}),
    ({'a': 1, 'c': 3}, {'a': 1, 'c': 3},
     {'required': ('a', ), 'allowed': ('c', )}),
    ({'a': 1, 'c': 3}, {'a': 1, 'c': 3},
     {'required': ('a', 'c'), 'allowed': ('c', )}),
    ({'a': 1, 'c': 3}, {'a': 1, 'c': 3},
     {'required': ('a', 'c'), 'allowed': ('a', 'c')}),
    ({'a': 1, 'c': 3}, {'a': 1, 'c': 3},
     {'required': ('a', 'c'), 'allowed': ()}),
    ({'a': 1, 'c': 3}, {'a': 1, 'c': 3}, {'required': ('a', 'c')}),
    ({'a': 1, 'c': 3}, {'a': 1, 'c': 3}, {'allowed': ('a', 'c')}),
)


@pytest.mark.parametrize('inp, kwargs_to_norm', fail_mapping)
def test_normalize_kwargs_fail(inp, kwargs_to_norm):
    with pytest.raises(TypeError), \
         cbook._suppress_matplotlib_deprecation_warning():
        cbook.normalize_kwargs(inp, **kwargs_to_norm)


@pytest.mark.parametrize('inp, expected, kwargs_to_norm',
                         pass_mapping)
def test_normalize_kwargs_pass(inp, expected, kwargs_to_norm):
    with cbook._suppress_matplotlib_deprecation_warning():
        # No other warning should be emitted.
        assert expected == cbook.normalize_kwargs(inp, **kwargs_to_norm)


def test_warn_external_frame_embedded_python():
    with patch.object(cbook, "sys") as mock_sys:
        mock_sys._getframe = Mock(return_value=None)
        with pytest.warns(UserWarning, match=r"\Adummy\Z"):
            cbook._warn_external("dummy")


def test_to_prestep():
    x = np.arange(4)
    y1 = np.arange(4)
    y2 = np.arange(4)[::-1]

    xs, y1s, y2s = cbook.pts_to_prestep(x, y1, y2)

    x_target = np.asarray([0, 0, 1, 1, 2, 2, 3], dtype=float)
    y1_target = np.asarray([0, 1, 1, 2, 2, 3, 3], dtype=float)
    y2_target = np.asarray([3, 2, 2, 1, 1, 0, 0], dtype=float)

    assert_array_equal(x_target, xs)
    assert_array_equal(y1_target, y1s)
    assert_array_equal(y2_target, y2s)

    xs, y1s = cbook.pts_to_prestep(x, y1)
    assert_array_equal(x_target, xs)
    assert_array_equal(y1_target, y1s)


def test_to_prestep_empty():
    steps = cbook.pts_to_prestep([], [])
    assert steps.shape == (2, 0)


def test_to_poststep():
    x = np.arange(4)
    y1 = np.arange(4)
    y2 = np.arange(4)[::-1]

    xs, y1s, y2s = cbook.pts_to_poststep(x, y1, y2)

    x_target = np.asarray([0, 1, 1, 2, 2, 3, 3], dtype=float)
    y1_target = np.asarray([0, 0, 1, 1, 2, 2, 3], dtype=float)
    y2_target = np.asarray([3, 3, 2, 2, 1, 1, 0], dtype=float)

    assert_array_equal(x_target, xs)
    assert_array_equal(y1_target, y1s)
    assert_array_equal(y2_target, y2s)

    xs, y1s = cbook.pts_to_poststep(x, y1)
    assert_array_equal(x_target, xs)
    assert_array_equal(y1_target, y1s)


def test_to_poststep_empty():
    steps = cbook.pts_to_poststep([], [])
    assert steps.shape == (2, 0)


def test_to_midstep():
    x = np.arange(4)
    y1 = np.arange(4)
    y2 = np.arange(4)[::-1]

    xs, y1s, y2s = cbook.pts_to_midstep(x, y1, y2)

    x_target = np.asarray([0, .5, .5, 1.5, 1.5, 2.5, 2.5, 3], dtype=float)
    y1_target = np.asarray([0, 0, 1, 1, 2, 2, 3, 3], dtype=float)
    y2_target = np.asarray([3, 3, 2, 2, 1, 1, 0, 0], dtype=float)

    assert_array_equal(x_target, xs)
    assert_array_equal(y1_target, y1s)
    assert_array_equal(y2_target, y2s)

    xs, y1s = cbook.pts_to_midstep(x, y1)
    assert_array_equal(x_target, xs)
    assert_array_equal(y1_target, y1s)


def test_to_midstep_empty():
    steps = cbook.pts_to_midstep([], [])
    assert steps.shape == (2, 0)


@pytest.mark.parametrize(
    "args",
    [(np.arange(12).reshape(3, 4), 'a'),
     (np.arange(12), 'a'),
     (np.arange(12), np.arange(3))])
def test_step_fails(args):
    with pytest.raises(ValueError):
        cbook.pts_to_prestep(*args)


def test_grouper():
    class dummy:
        pass
    a, b, c, d, e = objs = [dummy() for j in range(5)]
    g = cbook.Grouper()
    g.join(*objs)
    assert set(list(g)[0]) == set(objs)
    assert set(g.get_siblings(a)) == set(objs)

    for other in objs[1:]:
        assert g.joined(a, other)

    g.remove(a)
    for other in objs[1:]:
        assert not g.joined(a, other)

    for A, B in itertools.product(objs[1:], objs[1:]):
        assert g.joined(A, B)


def test_grouper_private():
    class dummy:
        pass
    objs = [dummy() for j in range(5)]
    g = cbook.Grouper()
    g.join(*objs)
    # reach in and touch the internals !
    mapping = g._mapping

    for o in objs:
        assert ref(o) in mapping

    base_set = mapping[ref(objs[0])]
    for o in objs[1:]:
        assert mapping[ref(o)] is base_set


def test_flatiter():
    x = np.arange(5)
    it = x.flat
    assert 0 == next(it)
    assert 1 == next(it)
    ret = cbook.safe_first_element(it)
    assert ret == 0

    assert 0 == next(it)
    assert 1 == next(it)


def test_reshape2d():

    class dummy:
        pass

    xnew = cbook._reshape_2D([], 'x')
    assert np.shape(xnew) == (1, 0)

    x = [dummy() for j in range(5)]

    xnew = cbook._reshape_2D(x, 'x')
    assert np.shape(xnew) == (1, 5)

    x = np.arange(5)
    xnew = cbook._reshape_2D(x, 'x')
    assert np.shape(xnew) == (1, 5)

    x = [[dummy() for j in range(5)] for i in range(3)]
    xnew = cbook._reshape_2D(x, 'x')
    assert np.shape(xnew) == (3, 5)

    # this is strange behaviour, but...
    x = np.random.rand(3, 5)
    xnew = cbook._reshape_2D(x, 'x')
    assert np.shape(xnew) == (5, 3)

    # Test a list of lists which are all of length 1
    x = [[1], [2], [3]]
    xnew = cbook._reshape_2D(x, 'x')
    assert isinstance(xnew, list)
    assert isinstance(xnew[0], np.ndarray) and xnew[0].shape == (1,)
    assert isinstance(xnew[1], np.ndarray) and xnew[1].shape == (1,)
    assert isinstance(xnew[2], np.ndarray) and xnew[2].shape == (1,)

    # Now test with a list of lists with different lengths, which means the
    # array will internally be converted to a 1D object array of lists
    x = [[1, 2, 3], [3, 4], [2]]
    xnew = cbook._reshape_2D(x, 'x')
    assert isinstance(xnew, list)
    assert isinstance(xnew[0], np.ndarray) and xnew[0].shape == (3,)
    assert isinstance(xnew[1], np.ndarray) and xnew[1].shape == (2,)
    assert isinstance(xnew[2], np.ndarray) and xnew[2].shape == (1,)

    # We now need to make sure that this works correctly for Numpy subclasses
    # where iterating over items can return subclasses too, which may be
    # iterable even if they are scalars. To emulate this, we make a Numpy
    # array subclass that returns Numpy 'scalars' when iterating or accessing
    # values, and these are technically iterable if checking for example
    # isinstance(x, collections.abc.Iterable).

    class ArraySubclass(np.ndarray):

        def __iter__(self):
            for value in super().__iter__():
                yield np.array(value)

        def __getitem__(self, item):
            return np.array(super().__getitem__(item))

    v = np.arange(10, dtype=float)
    x = ArraySubclass((10,), dtype=float, buffer=v.data)

    xnew = cbook._reshape_2D(x, 'x')

    # We check here that the array wasn't split up into many individual
    # ArraySubclass, which is what used to happen due to a bug in _reshape_2D
    assert len(xnew) == 1
    assert isinstance(xnew[0], ArraySubclass)

    # check list of strings:
    x = ['a', 'b', 'c', 'c', 'dd', 'e', 'f', 'ff', 'f']
    xnew = cbook._reshape_2D(x, 'x')
    assert len(xnew[0]) == len(x)
    assert isinstance(xnew[0], np.ndarray)


def test_reshape2d_pandas(pd):
    # seperate to allow the rest of the tests to run if no pandas...
    X = np.arange(30).reshape(10, 3)
    x = pd.DataFrame(X, columns=["a", "b", "c"])
    Xnew = cbook._reshape_2D(x, 'x')
    # Need to check each row because _reshape_2D returns a list of arrays:
    for x, xnew in zip(X.T, Xnew):
        np.testing.assert_array_equal(x, xnew)

    X = np.arange(30).reshape(10, 3)
    x = pd.DataFrame(X, columns=["a", "b", "c"])
    Xnew = cbook._reshape_2D(x, 'x')
    # Need to check each row because _reshape_2D returns a list of arrays:
    for x, xnew in zip(X.T, Xnew):
        np.testing.assert_array_equal(x, xnew)


def test_contiguous_regions():
    a, b, c = 3, 4, 5
    # Starts and ends with True
    mask = [True]*a + [False]*b + [True]*c
    expected = [(0, a), (a+b, a+b+c)]
    assert cbook.contiguous_regions(mask) == expected
    d, e = 6, 7
    # Starts with True ends with False
    mask = mask + [False]*e
    assert cbook.contiguous_regions(mask) == expected
    # Starts with False ends with True
    mask = [False]*d + mask[:-e]
    expected = [(d, d+a), (d+a+b, d+a+b+c)]
    assert cbook.contiguous_regions(mask) == expected
    # Starts and ends with False
    mask = mask + [False]*e
    assert cbook.contiguous_regions(mask) == expected
    # No True in mask
    assert cbook.contiguous_regions([False]*5) == []
    # Empty mask
    assert cbook.contiguous_regions([]) == []


def test_safe_first_element_pandas_series(pd):
    # deliberately create a pandas series with index not starting from 0
    s = pd.Series(range(5), index=range(10, 15))
    actual = cbook.safe_first_element(s)
    assert actual == 0


def test_delete_parameter():
    @cbook._delete_parameter("3.0", "foo")
    def func1(foo=None):
        pass

    @cbook._delete_parameter("3.0", "foo")
    def func2(**kwargs):
        pass

    for func in [func1, func2]:
        func()  # No warning.
        with pytest.warns(MatplotlibDeprecationWarning):
            func(foo="bar")

    def pyplot_wrapper(foo=cbook.deprecation._deprecated_parameter):
        func1(foo)

    pyplot_wrapper()  # No warning.
    with pytest.warns(MatplotlibDeprecationWarning):
        func(foo="bar")


def test_make_keyword_only():
    @cbook._make_keyword_only("3.0", "arg")
    def func(pre, arg, post=None):
        pass

    func(1, arg=2)  # Check that no warning is emitted.

    with pytest.warns(MatplotlibDeprecationWarning):
        func(1, 2)
    with pytest.warns(MatplotlibDeprecationWarning):
        func(1, 2, 3)


def test_warn_external(recwarn):
    cbook._warn_external("oops")
    assert len(recwarn) == 1
    assert recwarn[0].filename == __file__


def test_array_patch_perimeters():
    # This compares the old implementation as a reference for the
    # vectorized one.
    def check(x, rstride, cstride):
        rows, cols = x.shape
        row_inds = [*range(0, rows-1, rstride), rows-1]
        col_inds = [*range(0, cols-1, cstride), cols-1]
        polys = []
        for rs, rs_next in zip(row_inds[:-1], row_inds[1:]):
            for cs, cs_next in zip(col_inds[:-1], col_inds[1:]):
                # +1 ensures we share edges between polygons
                ps = cbook._array_perimeter(x[rs:rs_next+1, cs:cs_next+1]).T
                polys.append(ps)
        polys = np.asarray(polys)
        assert np.array_equal(polys,
                              cbook._array_patch_perimeters(
                                  x, rstride=rstride, cstride=cstride))

    def divisors(n):
        return [i for i in range(1, n + 1) if n % i == 0]

    for rows, cols in [(5, 5), (7, 14), (13, 9)]:
        x = np.arange(rows * cols).reshape(rows, cols)
        for rstride, cstride in itertools.product(divisors(rows - 1),
                                                  divisors(cols - 1)):
            check(x, rstride=rstride, cstride=cstride)


@pytest.mark.parametrize('target,test_shape',
                         [((None, ), (1, 3)),
                          ((None, 3), (1,)),
                          ((None, 3), (1, 2)),
                          ((1, 5), (1, 9)),
                          ((None, 2, None), (1, 3, 1))
                          ])
def test_check_shape(target, test_shape):
    error_pattern = (f"^'aardvark' must be {len(target)}D.*" +
                     re.escape(f'has shape {test_shape}'))
    data = np.zeros(test_shape)
    with pytest.raises(ValueError,
                       match=error_pattern):
        cbook._check_shape(target, aardvark=data)


def test_setattr_cm():
    class A:

        cls_level = object()
        override = object()
        def __init__(self):
            self.aardvark = 'aardvark'
            self.override = 'override'
            self._p = 'p'

        def meth(self):
            ...

        @classmethod
        def classy(klass):
            ...

        @staticmethod
        def static():
            ...

        @property
        def prop(self):
            return self._p

        @prop.setter
        def prop(self, val):
            self._p = val

    class B(A):
        ...

    other = A()

    def verify_pre_post_state(obj):
        # When you access a Python method the function is bound
        # to the object at access time so you get a new instance
        # of MethodType every time.
        #
        # https://docs.python.org/3/howto/descriptor.html#functions-and-methods
        assert obj.meth is not obj.meth
        # normal attribute should give you back the same instance every time
        assert obj.aardvark is obj.aardvark
        assert a.aardvark == 'aardvark'
        # and our property happens to give the same instance every time
        assert obj.prop is obj.prop
        assert obj.cls_level is A.cls_level
        assert obj.override == 'override'
        assert not hasattr(obj, 'extra')
        assert obj.prop == 'p'
        assert obj.monkey == other.meth
        assert obj.cls_level is A.cls_level
        assert 'cls_level' not in obj.__dict__
        assert 'classy' not in obj.__dict__
        assert 'static' not in obj.__dict__

    a = B()

    a.monkey = other.meth
    verify_pre_post_state(a)
    with cbook._setattr_cm(
            a, prop='squirrel',
            aardvark='moose', meth=lambda: None,
            override='boo', extra='extra',
            monkey=lambda: None, cls_level='bob',
            classy='classy', static='static'):
        # because we have set a lambda, it is normal attribute access
        # and the same every time
        assert a.meth is a.meth
        assert a.aardvark is a.aardvark
        assert a.aardvark == 'moose'
        assert a.override == 'boo'
        assert a.extra == 'extra'
        assert a.prop == 'squirrel'
        assert a.monkey != other.meth
        assert a.cls_level == 'bob'
        assert a.classy == 'classy'
        assert a.static == 'static'

    verify_pre_post_state(a)