test_agg.py
7.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import io
import numpy as np
from numpy.testing import assert_array_almost_equal
from PIL import Image, TiffTags
import pytest
from matplotlib import (
collections, path, pyplot as plt, transforms as mtransforms, rcParams)
from matplotlib.image import imread
from matplotlib.figure import Figure
from matplotlib.testing.decorators import image_comparison
def test_repeated_save_with_alpha():
# We want an image which has a background color of bluish green, with an
# alpha of 0.25.
fig = Figure([1, 0.4])
fig.set_facecolor((0, 1, 0.4))
fig.patch.set_alpha(0.25)
# The target color is fig.patch.get_facecolor()
buf = io.BytesIO()
fig.savefig(buf,
facecolor=fig.get_facecolor(),
edgecolor='none')
# Save the figure again to check that the
# colors don't bleed from the previous renderer.
buf.seek(0)
fig.savefig(buf,
facecolor=fig.get_facecolor(),
edgecolor='none')
# Check the first pixel has the desired color & alpha
# (approx: 0, 1.0, 0.4, 0.25)
buf.seek(0)
assert_array_almost_equal(tuple(imread(buf)[0, 0]),
(0.0, 1.0, 0.4, 0.250),
decimal=3)
def test_large_single_path_collection():
buff = io.BytesIO()
# Generates a too-large single path in a path collection that
# would cause a segfault if the draw_markers optimization is
# applied.
f, ax = plt.subplots()
collection = collections.PathCollection(
[path.Path([[-10, 5], [10, 5], [10, -5], [-10, -5], [-10, 5]])])
ax.add_artist(collection)
ax.set_xlim(10**-3, 1)
plt.savefig(buff)
def test_marker_with_nan():
# This creates a marker with nans in it, which was segfaulting the
# Agg backend (see #3722)
fig, ax = plt.subplots(1)
steps = 1000
data = np.arange(steps)
ax.semilogx(data)
ax.fill_between(data, data*0.8, data*1.2)
buf = io.BytesIO()
fig.savefig(buf, format='png')
def test_long_path():
buff = io.BytesIO()
fig, ax = plt.subplots()
np.random.seed(0)
points = np.random.rand(70000)
ax.plot(points)
fig.savefig(buff, format='png')
@image_comparison(['agg_filter.png'], remove_text=True)
def test_agg_filter():
def smooth1d(x, window_len):
# copied from http://www.scipy.org/Cookbook/SignalSmooth
s = np.r_[
2*x[0] - x[window_len:1:-1], x, 2*x[-1] - x[-1:-window_len:-1]]
w = np.hanning(window_len)
y = np.convolve(w/w.sum(), s, mode='same')
return y[window_len-1:-window_len+1]
def smooth2d(A, sigma=3):
window_len = max(int(sigma), 3) * 2 + 1
A = np.apply_along_axis(smooth1d, 0, A, window_len)
A = np.apply_along_axis(smooth1d, 1, A, window_len)
return A
class BaseFilter:
def get_pad(self, dpi):
return 0
def process_image(self, padded_src, dpi):
raise NotImplementedError("Should be overridden by subclasses")
def __call__(self, im, dpi):
pad = self.get_pad(dpi)
padded_src = np.pad(im, [(pad, pad), (pad, pad), (0, 0)],
"constant")
tgt_image = self.process_image(padded_src, dpi)
return tgt_image, -pad, -pad
class OffsetFilter(BaseFilter):
def __init__(self, offsets=(0, 0)):
self.offsets = offsets
def get_pad(self, dpi):
return int(max(self.offsets) / 72 * dpi)
def process_image(self, padded_src, dpi):
ox, oy = self.offsets
a1 = np.roll(padded_src, int(ox / 72 * dpi), axis=1)
a2 = np.roll(a1, -int(oy / 72 * dpi), axis=0)
return a2
class GaussianFilter(BaseFilter):
"""Simple Gaussian filter."""
def __init__(self, sigma, alpha=0.5, color=(0, 0, 0)):
self.sigma = sigma
self.alpha = alpha
self.color = color
def get_pad(self, dpi):
return int(self.sigma*3 / 72 * dpi)
def process_image(self, padded_src, dpi):
tgt_image = np.empty_like(padded_src)
tgt_image[:, :, :3] = self.color
tgt_image[:, :, 3] = smooth2d(padded_src[:, :, 3] * self.alpha,
self.sigma / 72 * dpi)
return tgt_image
class DropShadowFilter(BaseFilter):
def __init__(self, sigma, alpha=0.3, color=(0, 0, 0), offsets=(0, 0)):
self.gauss_filter = GaussianFilter(sigma, alpha, color)
self.offset_filter = OffsetFilter(offsets)
def get_pad(self, dpi):
return max(self.gauss_filter.get_pad(dpi),
self.offset_filter.get_pad(dpi))
def process_image(self, padded_src, dpi):
t1 = self.gauss_filter.process_image(padded_src, dpi)
t2 = self.offset_filter.process_image(t1, dpi)
return t2
fig, ax = plt.subplots()
# draw lines
l1, = ax.plot([0.1, 0.5, 0.9], [0.1, 0.9, 0.5], "bo-",
mec="b", mfc="w", lw=5, mew=3, ms=10, label="Line 1")
l2, = ax.plot([0.1, 0.5, 0.9], [0.5, 0.2, 0.7], "ro-",
mec="r", mfc="w", lw=5, mew=3, ms=10, label="Line 1")
gauss = DropShadowFilter(4)
for l in [l1, l2]:
# draw shadows with same lines with slight offset.
xx = l.get_xdata()
yy = l.get_ydata()
shadow, = ax.plot(xx, yy)
shadow.update_from(l)
# offset transform
ot = mtransforms.offset_copy(l.get_transform(), ax.figure,
x=4.0, y=-6.0, units='points')
shadow.set_transform(ot)
# adjust zorder of the shadow lines so that it is drawn below the
# original lines
shadow.set_zorder(l.get_zorder() - 0.5)
shadow.set_agg_filter(gauss)
shadow.set_rasterized(True) # to support mixed-mode renderers
ax.set_xlim(0., 1.)
ax.set_ylim(0., 1.)
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
def test_too_large_image():
fig = plt.figure(figsize=(300, 1000))
buff = io.BytesIO()
with pytest.raises(ValueError):
fig.savefig(buff)
def test_chunksize():
x = range(200)
# Test without chunksize
fig, ax = plt.subplots()
ax.plot(x, np.sin(x))
fig.canvas.draw()
# Test with chunksize
fig, ax = plt.subplots()
rcParams['agg.path.chunksize'] = 105
ax.plot(x, np.sin(x))
fig.canvas.draw()
@pytest.mark.backend('Agg')
def test_jpeg_dpi():
# Check that dpi is set correctly in jpg files.
plt.plot([0, 1, 2], [0, 1, 0])
buf = io.BytesIO()
plt.savefig(buf, format="jpg", dpi=200)
im = Image.open(buf)
assert im.info['dpi'] == (200, 200)
def test_pil_kwargs_png():
from PIL.PngImagePlugin import PngInfo
buf = io.BytesIO()
pnginfo = PngInfo()
pnginfo.add_text("Software", "test")
plt.figure().savefig(buf, format="png", pil_kwargs={"pnginfo": pnginfo})
im = Image.open(buf)
assert im.info["Software"] == "test"
def test_pil_kwargs_tiff():
buf = io.BytesIO()
pil_kwargs = {"description": "test image"}
plt.figure().savefig(buf, format="tiff", pil_kwargs=pil_kwargs)
im = Image.open(buf)
tags = {TiffTags.TAGS_V2[k].name: v for k, v in im.tag_v2.items()}
assert tags["ImageDescription"] == "test image"