image.py
65.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
"""
The image module supports basic image loading, rescaling and display
operations.
"""
import math
import os
import logging
from numbers import Number
from pathlib import Path
import numpy as np
import PIL.PngImagePlugin
import matplotlib as mpl
import matplotlib.artist as martist
from matplotlib.backend_bases import FigureCanvasBase
import matplotlib.colors as mcolors
import matplotlib.cm as cm
import matplotlib.cbook as cbook
# For clarity, names from _image are given explicitly in this module:
import matplotlib._image as _image
# For user convenience, the names from _image are also imported into
# the image namespace:
from matplotlib._image import *
from matplotlib.transforms import (Affine2D, BboxBase, Bbox, BboxTransform,
IdentityTransform, TransformedBbox)
_log = logging.getLogger(__name__)
# map interpolation strings to module constants
_interpd_ = {
'antialiased': _image.NEAREST, # this will use nearest or Hanning...
'none': _image.NEAREST, # fall back to nearest when not supported
'nearest': _image.NEAREST,
'bilinear': _image.BILINEAR,
'bicubic': _image.BICUBIC,
'spline16': _image.SPLINE16,
'spline36': _image.SPLINE36,
'hanning': _image.HANNING,
'hamming': _image.HAMMING,
'hermite': _image.HERMITE,
'kaiser': _image.KAISER,
'quadric': _image.QUADRIC,
'catrom': _image.CATROM,
'gaussian': _image.GAUSSIAN,
'bessel': _image.BESSEL,
'mitchell': _image.MITCHELL,
'sinc': _image.SINC,
'lanczos': _image.LANCZOS,
'blackman': _image.BLACKMAN,
}
interpolations_names = set(_interpd_)
def composite_images(images, renderer, magnification=1.0):
"""
Composite a number of RGBA images into one. The images are
composited in the order in which they appear in the *images* list.
Parameters
----------
images : list of Images
Each must have a `make_image` method. For each image,
`can_composite` should return `True`, though this is not
enforced by this function. Each image must have a purely
affine transformation with no shear.
renderer : `.RendererBase`
magnification : float, default: 1
The additional magnification to apply for the renderer in use.
Returns
-------
image : uint8 3d array
The composited RGBA image.
offset_x, offset_y : float
The (left, bottom) offset where the composited image should be placed
in the output figure.
"""
if len(images) == 0:
return np.empty((0, 0, 4), dtype=np.uint8), 0, 0
parts = []
bboxes = []
for image in images:
data, x, y, trans = image.make_image(renderer, magnification)
if data is not None:
x *= magnification
y *= magnification
parts.append((data, x, y, image._get_scalar_alpha()))
bboxes.append(
Bbox([[x, y], [x + data.shape[1], y + data.shape[0]]]))
if len(parts) == 0:
return np.empty((0, 0, 4), dtype=np.uint8), 0, 0
bbox = Bbox.union(bboxes)
output = np.zeros(
(int(bbox.height), int(bbox.width), 4), dtype=np.uint8)
for data, x, y, alpha in parts:
trans = Affine2D().translate(x - bbox.x0, y - bbox.y0)
_image.resample(data, output, trans, _image.NEAREST,
resample=False, alpha=alpha)
return output, bbox.x0 / magnification, bbox.y0 / magnification
def _draw_list_compositing_images(
renderer, parent, artists, suppress_composite=None):
"""
Draw a sorted list of artists, compositing images into a single
image where possible.
For internal Matplotlib use only: It is here to reduce duplication
between `Figure.draw` and `Axes.draw`, but otherwise should not be
generally useful.
"""
has_images = any(isinstance(x, _ImageBase) for x in artists)
# override the renderer default if suppressComposite is not None
not_composite = (suppress_composite if suppress_composite is not None
else renderer.option_image_nocomposite())
if not_composite or not has_images:
for a in artists:
a.draw(renderer)
else:
# Composite any adjacent images together
image_group = []
mag = renderer.get_image_magnification()
def flush_images():
if len(image_group) == 1:
image_group[0].draw(renderer)
elif len(image_group) > 1:
data, l, b = composite_images(image_group, renderer, mag)
if data.size != 0:
gc = renderer.new_gc()
gc.set_clip_rectangle(parent.bbox)
gc.set_clip_path(parent.get_clip_path())
renderer.draw_image(gc, round(l), round(b), data)
gc.restore()
del image_group[:]
for a in artists:
if (isinstance(a, _ImageBase) and a.can_composite() and
a.get_clip_on()):
image_group.append(a)
else:
flush_images()
a.draw(renderer)
flush_images()
def _resample(
image_obj, data, out_shape, transform, *, resample=None, alpha=1):
"""
Convenience wrapper around `._image.resample` to resample *data* to
*out_shape* (with a third dimension if *data* is RGBA) that takes care of
allocating the output array and fetching the relevant properties from the
Image object *image_obj*.
"""
# decide if we need to apply anti-aliasing if the data is upsampled:
# compare the number of displayed pixels to the number of
# the data pixels.
interpolation = image_obj.get_interpolation()
if interpolation == 'antialiased':
# don't antialias if upsampling by an integer number or
# if zooming in more than a factor of 3
pos = np.array([[0, 0], [data.shape[1], data.shape[0]]])
disp = transform.transform(pos)
dispx = np.abs(np.diff(disp[:, 0]))
dispy = np.abs(np.diff(disp[:, 1]))
if ((dispx > 3 * data.shape[1] or
dispx == data.shape[1] or
dispx == 2 * data.shape[1]) and
(dispy > 3 * data.shape[0] or
dispy == data.shape[0] or
dispy == 2 * data.shape[0])):
interpolation = 'nearest'
else:
interpolation = 'hanning'
out = np.zeros(out_shape + data.shape[2:], data.dtype) # 2D->2D, 3D->3D.
if resample is None:
resample = image_obj.get_resample()
_image.resample(data, out, transform,
_interpd_[interpolation],
resample,
alpha,
image_obj.get_filternorm(),
image_obj.get_filterrad())
return out
def _rgb_to_rgba(A):
"""
Convert an RGB image to RGBA, as required by the image resample C++
extension.
"""
rgba = np.zeros((A.shape[0], A.shape[1], 4), dtype=A.dtype)
rgba[:, :, :3] = A
if rgba.dtype == np.uint8:
rgba[:, :, 3] = 255
else:
rgba[:, :, 3] = 1.0
return rgba
class _ImageBase(martist.Artist, cm.ScalarMappable):
"""
Base class for images.
interpolation and cmap default to their rc settings
cmap is a colors.Colormap instance
norm is a colors.Normalize instance to map luminance to 0-1
extent is data axes (left, right, bottom, top) for making image plots
registered with data plots. Default is to label the pixel
centers with the zero-based row and column indices.
Additional kwargs are matplotlib.artist properties
"""
zorder = 0
def __init__(self, ax,
cmap=None,
norm=None,
interpolation=None,
origin=None,
filternorm=True,
filterrad=4.0,
resample=False,
**kwargs
):
martist.Artist.__init__(self)
cm.ScalarMappable.__init__(self, norm, cmap)
if origin is None:
origin = mpl.rcParams['image.origin']
cbook._check_in_list(["upper", "lower"], origin=origin)
self.origin = origin
self.set_filternorm(filternorm)
self.set_filterrad(filterrad)
self.set_interpolation(interpolation)
self.set_resample(resample)
self.axes = ax
self._imcache = None
self.update(kwargs)
def __getstate__(self):
state = super().__getstate__()
# We can't pickle the C Image cached object.
state['_imcache'] = None
return state
def get_size(self):
"""Return the size of the image as tuple (numrows, numcols)."""
if self._A is None:
raise RuntimeError('You must first set the image array')
return self._A.shape[:2]
def set_alpha(self, alpha):
"""
Set the alpha value used for blending - not supported on all backends.
Parameters
----------
alpha : float
"""
if alpha is not None and not isinstance(alpha, Number):
alpha = np.asarray(alpha)
if alpha.ndim != 2:
raise TypeError('alpha must be a float, two-dimensional '
'array, or None')
self._alpha = alpha
self.pchanged()
self.stale = True
self._imcache = None
def _get_scalar_alpha(self):
"""
Get a scalar alpha value to be applied to the artist as a whole.
If the alpha value is a matrix, the method returns 1.0 because pixels
have individual alpha values (see `~._ImageBase._make_image` for
details). If the alpha value is a scalar, the method returns said value
to be applied to the artist as a whole because pixels do not have
individual alpha values.
"""
return 1.0 if self._alpha is None or np.ndim(self._alpha) > 0 \
else self._alpha
def changed(self):
"""
Call this whenever the mappable is changed so observers can update.
"""
self._imcache = None
self._rgbacache = None
cm.ScalarMappable.changed(self)
def _make_image(self, A, in_bbox, out_bbox, clip_bbox, magnification=1.0,
unsampled=False, round_to_pixel_border=True):
"""
Normalize, rescale, and colormap the image *A* from the given *in_bbox*
(in data space), to the given *out_bbox* (in pixel space) clipped to
the given *clip_bbox* (also in pixel space), and magnified by the
*magnification* factor.
*A* may be a greyscale image (M, N) with a dtype of float32, float64,
float128, uint16 or uint8, or an (M, N, 4) RGBA image with a dtype of
float32, float64, float128, or uint8.
If *unsampled* is True, the image will not be scaled, but an
appropriate affine transformation will be returned instead.
If *round_to_pixel_border* is True, the output image size will be
rounded to the nearest pixel boundary. This makes the images align
correctly with the axes. It should not be used if exact scaling is
needed, such as for `FigureImage`.
Returns
-------
image : (M, N, 4) uint8 array
The RGBA image, resampled unless *unsampled* is True.
x, y : float
The upper left corner where the image should be drawn, in pixel
space.
trans : Affine2D
The affine transformation from image to pixel space.
"""
if A is None:
raise RuntimeError('You must first set the image '
'array or the image attribute')
if A.size == 0:
raise RuntimeError("_make_image must get a non-empty image. "
"Your Artist's draw method must filter before "
"this method is called.")
clipped_bbox = Bbox.intersection(out_bbox, clip_bbox)
if clipped_bbox is None:
return None, 0, 0, None
out_width_base = clipped_bbox.width * magnification
out_height_base = clipped_bbox.height * magnification
if out_width_base == 0 or out_height_base == 0:
return None, 0, 0, None
if self.origin == 'upper':
# Flip the input image using a transform. This avoids the
# problem with flipping the array, which results in a copy
# when it is converted to contiguous in the C wrapper
t0 = Affine2D().translate(0, -A.shape[0]).scale(1, -1)
else:
t0 = IdentityTransform()
t0 += (
Affine2D()
.scale(
in_bbox.width / A.shape[1],
in_bbox.height / A.shape[0])
.translate(in_bbox.x0, in_bbox.y0)
+ self.get_transform())
t = (t0
+ (Affine2D()
.translate(-clipped_bbox.x0, -clipped_bbox.y0)
.scale(magnification)))
# So that the image is aligned with the edge of the axes, we want to
# round up the output width to the next integer. This also means
# scaling the transform slightly to account for the extra subpixel.
if (t.is_affine and round_to_pixel_border and
(out_width_base % 1.0 != 0.0 or out_height_base % 1.0 != 0.0)):
out_width = math.ceil(out_width_base)
out_height = math.ceil(out_height_base)
extra_width = (out_width - out_width_base) / out_width_base
extra_height = (out_height - out_height_base) / out_height_base
t += Affine2D().scale(1.0 + extra_width, 1.0 + extra_height)
else:
out_width = int(out_width_base)
out_height = int(out_height_base)
out_shape = (out_height, out_width)
if not unsampled:
if not (A.ndim == 2 or A.ndim == 3 and A.shape[-1] in (3, 4)):
raise ValueError(f"Invalid shape {A.shape} for image data")
if A.ndim == 2:
# if we are a 2D array, then we are running through the
# norm + colormap transformation. However, in general the
# input data is not going to match the size on the screen so we
# have to resample to the correct number of pixels
# TODO slice input array first
inp_dtype = A.dtype
a_min = A.min()
a_max = A.max()
# figure out the type we should scale to. For floats,
# leave as is. For integers cast to an appropriate-sized
# float. Small integers get smaller floats in an attempt
# to keep the memory footprint reasonable.
if a_min is np.ma.masked:
# all masked, so values don't matter
a_min, a_max = np.int32(0), np.int32(1)
if inp_dtype.kind == 'f':
scaled_dtype = A.dtype
# Cast to float64
if A.dtype not in (np.float32, np.float16):
if A.dtype != np.float64:
cbook._warn_external(
f"Casting input data from '{A.dtype}' to "
f"'float64' for imshow")
scaled_dtype = np.float64
else:
# probably an integer of some type.
da = a_max.astype(np.float64) - a_min.astype(np.float64)
# give more breathing room if a big dynamic range
scaled_dtype = np.float64 if da > 1e8 else np.float32
# scale the input data to [.1, .9]. The Agg
# interpolators clip to [0, 1] internally, use a
# smaller input scale to identify which of the
# interpolated points need to be should be flagged as
# over / under.
# This may introduce numeric instabilities in very broadly
# scaled data
# Always copy, and don't allow array subtypes.
A_scaled = np.array(A, dtype=scaled_dtype)
# clip scaled data around norm if necessary.
# This is necessary for big numbers at the edge of
# float64's ability to represent changes. Applying
# a norm first would be good, but ruins the interpolation
# of over numbers.
self.norm.autoscale_None(A)
dv = np.float64(self.norm.vmax) - np.float64(self.norm.vmin)
vmid = self.norm.vmin + dv / 2
fact = 1e7 if scaled_dtype == np.float64 else 1e4
newmin = vmid - dv * fact
if newmin < a_min:
newmin = None
else:
a_min = np.float64(newmin)
newmax = vmid + dv * fact
if newmax > a_max:
newmax = None
else:
a_max = np.float64(newmax)
if newmax is not None or newmin is not None:
np.clip(A_scaled, newmin, newmax, out=A_scaled)
# used to rescale the raw data to [offset, 1-offset]
# so that the resampling code will run cleanly. Using
# dyadic numbers here could reduce the error, but
# would not full eliminate it and breaks a number of
# tests (due to the slightly different error bouncing
# some pixels across a boundary in the (very
# quantized) color mapping step).
offset = .1
frac = .8
# we need to run the vmin/vmax through the same rescaling
# that we run the raw data through because there are small
# errors in the round-trip due to float precision. If we
# do not run the vmin/vmax through the same pipeline we can
# have values close or equal to the boundaries end up on the
# wrong side.
vmin, vmax = self.norm.vmin, self.norm.vmax
if vmin is np.ma.masked:
vmin, vmax = a_min, a_max
vrange = np.array([vmin, vmax], dtype=scaled_dtype)
A_scaled -= a_min
vrange -= a_min
# a_min and a_max might be ndarray subclasses so use
# item to avoid errors
a_min = a_min.astype(scaled_dtype).item()
a_max = a_max.astype(scaled_dtype).item()
if a_min != a_max:
A_scaled /= ((a_max - a_min) / frac)
vrange /= ((a_max - a_min) / frac)
A_scaled += offset
vrange += offset
# resample the input data to the correct resolution and shape
A_resampled = _resample(self, A_scaled, out_shape, t)
# done with A_scaled now, remove from namespace to be sure!
del A_scaled
# un-scale the resampled data to approximately the
# original range things that interpolated to above /
# below the original min/max will still be above /
# below, but possibly clipped in the case of higher order
# interpolation + drastically changing data.
A_resampled -= offset
vrange -= offset
if a_min != a_max:
A_resampled *= ((a_max - a_min) / frac)
vrange *= ((a_max - a_min) / frac)
A_resampled += a_min
vrange += a_min
# if using NoNorm, cast back to the original datatype
if isinstance(self.norm, mcolors.NoNorm):
A_resampled = A_resampled.astype(A.dtype)
mask = (np.where(A.mask, np.float32(np.nan), np.float32(1))
if A.mask.shape == A.shape # nontrivial mask
else np.ones_like(A, np.float32))
# we always have to interpolate the mask to account for
# non-affine transformations
out_alpha = _resample(self, mask, out_shape, t, resample=True)
# done with the mask now, delete from namespace to be sure!
del mask
# Agg updates out_alpha in place. If the pixel has no image
# data it will not be updated (and still be 0 as we initialized
# it), if input data that would go into that output pixel than
# it will be `nan`, if all the input data for a pixel is good
# it will be 1, and if there is _some_ good data in that output
# pixel it will be between [0, 1] (such as a rotated image).
out_mask = np.isnan(out_alpha)
out_alpha[out_mask] = 1
# Apply the pixel-by-pixel alpha values if present
alpha = self.get_alpha()
if alpha is not None and np.ndim(alpha) > 0:
out_alpha *= _resample(self, alpha, out_shape,
t, resample=True)
# mask and run through the norm
resampled_masked = np.ma.masked_array(A_resampled, out_mask)
# we have re-set the vmin/vmax to account for small errors
# that may have moved input values in/out of range
s_vmin, s_vmax = vrange
if isinstance(self.norm, mcolors.LogNorm):
if s_vmin < 0:
s_vmin = max(s_vmin, np.finfo(scaled_dtype).eps)
with cbook._setattr_cm(self.norm,
vmin=s_vmin,
vmax=s_vmax,
):
output = self.norm(resampled_masked)
else:
if A.shape[2] == 3:
A = _rgb_to_rgba(A)
alpha = self._get_scalar_alpha()
output_alpha = _resample( # resample alpha channel
self, A[..., 3], out_shape, t, alpha=alpha)
output = _resample( # resample rgb channels
self, _rgb_to_rgba(A[..., :3]), out_shape, t, alpha=alpha)
output[..., 3] = output_alpha # recombine rgb and alpha
# at this point output is either a 2D array of normed data
# (of int or float)
# or an RGBA array of re-sampled input
output = self.to_rgba(output, bytes=True, norm=False)
# output is now a correctly sized RGBA array of uint8
# Apply alpha *after* if the input was greyscale without a mask
if A.ndim == 2:
alpha = self._get_scalar_alpha()
alpha_channel = output[:, :, 3]
alpha_channel[:] = np.asarray(
np.asarray(alpha_channel, np.float32) * out_alpha * alpha,
np.uint8)
else:
if self._imcache is None:
self._imcache = self.to_rgba(A, bytes=True, norm=(A.ndim == 2))
output = self._imcache
# Subset the input image to only the part that will be
# displayed
subset = TransformedBbox(clip_bbox, t0.inverted()).frozen()
output = output[
int(max(subset.ymin, 0)):
int(min(subset.ymax + 1, output.shape[0])),
int(max(subset.xmin, 0)):
int(min(subset.xmax + 1, output.shape[1]))]
t = Affine2D().translate(
int(max(subset.xmin, 0)), int(max(subset.ymin, 0))) + t
return output, clipped_bbox.x0, clipped_bbox.y0, t
def make_image(self, renderer, magnification=1.0, unsampled=False):
"""
Normalize, rescale, and colormap this image's data for rendering using
*renderer*, with the given *magnification*.
If *unsampled* is True, the image will not be scaled, but an
appropriate affine transformation will be returned instead.
Returns
-------
image : (M, N, 4) uint8 array
The RGBA image, resampled unless *unsampled* is True.
x, y : float
The upper left corner where the image should be drawn, in pixel
space.
trans : Affine2D
The affine transformation from image to pixel space.
"""
raise NotImplementedError('The make_image method must be overridden')
def _check_unsampled_image(self):
"""
Return whether the image is better to be drawn unsampled.
The derived class needs to override it.
"""
return False
@martist.allow_rasterization
def draw(self, renderer, *args, **kwargs):
# if not visible, declare victory and return
if not self.get_visible():
self.stale = False
return
# for empty images, there is nothing to draw!
if self.get_array().size == 0:
self.stale = False
return
# actually render the image.
gc = renderer.new_gc()
self._set_gc_clip(gc)
gc.set_alpha(self._get_scalar_alpha())
gc.set_url(self.get_url())
gc.set_gid(self.get_gid())
if (renderer.option_scale_image() # Renderer supports transform kwarg.
and self._check_unsampled_image()
and self.get_transform().is_affine):
im, l, b, trans = self.make_image(renderer, unsampled=True)
if im is not None:
trans = Affine2D().scale(im.shape[1], im.shape[0]) + trans
renderer.draw_image(gc, l, b, im, trans)
else:
im, l, b, trans = self.make_image(
renderer, renderer.get_image_magnification())
if im is not None:
renderer.draw_image(gc, l, b, im)
gc.restore()
self.stale = False
def contains(self, mouseevent):
"""Test whether the mouse event occurred within the image."""
inside, info = self._default_contains(mouseevent)
if inside is not None:
return inside, info
# 1) This doesn't work for figimage; but figimage also needs a fix
# below (as the check cannot use x/ydata and extents).
# 2) As long as the check below uses x/ydata, we need to test axes
# identity instead of `self.axes.contains(event)` because even if
# axes overlap, x/ydata is only valid for event.inaxes anyways.
if self.axes is not mouseevent.inaxes:
return False, {}
# TODO: make sure this is consistent with patch and patch
# collection on nonlinear transformed coordinates.
# TODO: consider returning image coordinates (shouldn't
# be too difficult given that the image is rectilinear
x, y = mouseevent.xdata, mouseevent.ydata
xmin, xmax, ymin, ymax = self.get_extent()
if xmin > xmax:
xmin, xmax = xmax, xmin
if ymin > ymax:
ymin, ymax = ymax, ymin
if x is not None and y is not None:
inside = (xmin <= x <= xmax) and (ymin <= y <= ymax)
else:
inside = False
return inside, {}
def write_png(self, fname):
"""Write the image to png file *fname*."""
im = self.to_rgba(self._A[::-1] if self.origin == 'lower' else self._A,
bytes=True, norm=True)
PIL.Image.fromarray(im).save(fname, format="png")
def set_data(self, A):
"""
Set the image array.
Note that this function does *not* update the normalization used.
Parameters
----------
A : array-like or `PIL.Image.Image`
"""
if isinstance(A, PIL.Image.Image):
A = pil_to_array(A) # Needed e.g. to apply png palette.
self._A = cbook.safe_masked_invalid(A, copy=True)
if (self._A.dtype != np.uint8 and
not np.can_cast(self._A.dtype, float, "same_kind")):
raise TypeError("Image data of dtype {} cannot be converted to "
"float".format(self._A.dtype))
if self._A.ndim == 3 and self._A.shape[-1] == 1:
# If just one dimension assume scalar and apply colormap
self._A = self._A[:, :, 0]
if not (self._A.ndim == 2
or self._A.ndim == 3 and self._A.shape[-1] in [3, 4]):
raise TypeError("Invalid shape {} for image data"
.format(self._A.shape))
if self._A.ndim == 3:
# If the input data has values outside the valid range (after
# normalisation), we issue a warning and then clip X to the bounds
# - otherwise casting wraps extreme values, hiding outliers and
# making reliable interpretation impossible.
high = 255 if np.issubdtype(self._A.dtype, np.integer) else 1
if self._A.min() < 0 or high < self._A.max():
_log.warning(
'Clipping input data to the valid range for imshow with '
'RGB data ([0..1] for floats or [0..255] for integers).'
)
self._A = np.clip(self._A, 0, high)
# Cast unsupported integer types to uint8
if self._A.dtype != np.uint8 and np.issubdtype(self._A.dtype,
np.integer):
self._A = self._A.astype(np.uint8)
self._imcache = None
self._rgbacache = None
self.stale = True
def set_array(self, A):
"""
Retained for backwards compatibility - use set_data instead.
Parameters
----------
A : array-like
"""
# This also needs to be here to override the inherited
# cm.ScalarMappable.set_array method so it is not invoked by mistake.
self.set_data(A)
def get_interpolation(self):
"""
Return the interpolation method the image uses when resizing.
One of 'antialiased', 'nearest', 'bilinear', 'bicubic', 'spline16',
'spline36', 'hanning', 'hamming', 'hermite', 'kaiser', 'quadric',
'catrom', 'gaussian', 'bessel', 'mitchell', 'sinc', 'lanczos',
or 'none'.
"""
return self._interpolation
def set_interpolation(self, s):
"""
Set the interpolation method the image uses when resizing.
If None, use :rc:`image.interpolation`. If 'none', the image is
shown as is without interpolating. 'none' is only supported in
agg, ps and pdf backends and will fall back to 'nearest' mode
for other backends.
Parameters
----------
s : {'antialiased', 'nearest', 'bilinear', 'bicubic', 'spline16', \
'spline36', 'hanning', 'hamming', 'hermite', 'kaiser', 'quadric', 'catrom', \
'gaussian', 'bessel', 'mitchell', 'sinc', 'lanczos', 'none'} or None
"""
if s is None:
s = mpl.rcParams['image.interpolation']
s = s.lower()
cbook._check_in_list(_interpd_, interpolation=s)
self._interpolation = s
self.stale = True
def can_composite(self):
"""Return whether the image can be composited with its neighbors."""
trans = self.get_transform()
return (
self._interpolation != 'none' and
trans.is_affine and
trans.is_separable)
def set_resample(self, v):
"""
Set whether image resampling is used.
Parameters
----------
v : bool or None
If None, use :rc:`image.resample`.
"""
if v is None:
v = mpl.rcParams['image.resample']
self._resample = v
self.stale = True
def get_resample(self):
"""Return whether image resampling is used."""
return self._resample
def set_filternorm(self, filternorm):
"""
Set whether the resize filter normalizes the weights.
See help for `~.Axes.imshow`.
Parameters
----------
filternorm : bool
"""
self._filternorm = bool(filternorm)
self.stale = True
def get_filternorm(self):
"""Return whether the resize filter normalizes the weights."""
return self._filternorm
def set_filterrad(self, filterrad):
"""
Set the resize filter radius only applicable to some
interpolation schemes -- see help for imshow
Parameters
----------
filterrad : positive float
"""
r = float(filterrad)
if r <= 0:
raise ValueError("The filter radius must be a positive number")
self._filterrad = r
self.stale = True
def get_filterrad(self):
"""Return the filterrad setting."""
return self._filterrad
class AxesImage(_ImageBase):
"""
An image attached to an Axes.
Parameters
----------
ax : `~.axes.Axes`
The axes the image will belong to.
cmap : str or `~matplotlib.colors.Colormap`, default: :rc:`image.cmap`
The Colormap instance or registered colormap name used to map scalar
data to colors.
norm : `~matplotlib.colors.Normalize`
Maps luminance to 0-1.
interpolation : str, default: :rc:`image.interpolation`
Supported values are 'none', 'antialiased', 'nearest', 'bilinear',
'bicubic', 'spline16', 'spline36', 'hanning', 'hamming', 'hermite',
'kaiser', 'quadric', 'catrom', 'gaussian', 'bessel', 'mitchell',
'sinc', 'lanczos'.
origin : {'upper', 'lower'}, default: :rc:`image.origin`
Place the [0, 0] index of the array in the upper left or lower left
corner of the axes. The convention 'upper' is typically used for
matrices and images.
extent : tuple, optional
The data axes (left, right, bottom, top) for making image plots
registered with data plots. Default is to label the pixel
centers with the zero-based row and column indices.
filternorm : bool, default: True
A parameter for the antigrain image resize filter
(see the antigrain documentation).
If filternorm is set, the filter normalizes integer values and corrects
the rounding errors. It doesn't do anything with the source floating
point values, it corrects only integers according to the rule of 1.0
which means that any sum of pixel weights must be equal to 1.0. So,
the filter function must produce a graph of the proper shape.
filterrad : float > 0, default: 4
The filter radius for filters that have a radius parameter, i.e. when
interpolation is one of: 'sinc', 'lanczos' or 'blackman'.
resample : bool, default: False
When True, use a full resampling method. When False, only resample when
the output image is larger than the input image.
**kwargs : `.Artist` properties
"""
def __str__(self):
return "AxesImage(%g,%g;%gx%g)" % tuple(self.axes.bbox.bounds)
def __init__(self, ax,
cmap=None,
norm=None,
interpolation=None,
origin=None,
extent=None,
filternorm=True,
filterrad=4.0,
resample=False,
**kwargs
):
self._extent = extent
super().__init__(
ax,
cmap=cmap,
norm=norm,
interpolation=interpolation,
origin=origin,
filternorm=filternorm,
filterrad=filterrad,
resample=resample,
**kwargs
)
def get_window_extent(self, renderer=None):
x0, x1, y0, y1 = self._extent
bbox = Bbox.from_extents([x0, y0, x1, y1])
return bbox.transformed(self.axes.transData)
def make_image(self, renderer, magnification=1.0, unsampled=False):
# docstring inherited
trans = self.get_transform()
# image is created in the canvas coordinate.
x1, x2, y1, y2 = self.get_extent()
bbox = Bbox(np.array([[x1, y1], [x2, y2]]))
transformed_bbox = TransformedBbox(bbox, trans)
clip = ((self.get_clip_box() or self.axes.bbox) if self.get_clip_on()
else self.figure.bbox)
return self._make_image(self._A, bbox, transformed_bbox, clip,
magnification, unsampled=unsampled)
def _check_unsampled_image(self):
"""Return whether the image would be better drawn unsampled."""
return self.get_interpolation() == "none"
def set_extent(self, extent):
"""
Set the image extent.
Parameters
----------
extent : 4-tuple of float
The position and size of the image as tuple
``(left, right, bottom, top)`` in data coordinates.
Notes
-----
This updates ``ax.dataLim``, and, if autoscaling, sets ``ax.viewLim``
to tightly fit the image, regardless of ``dataLim``. Autoscaling
state is not changed, so following this with ``ax.autoscale_view()``
will redo the autoscaling in accord with ``dataLim``.
"""
self._extent = xmin, xmax, ymin, ymax = extent
corners = (xmin, ymin), (xmax, ymax)
self.axes.update_datalim(corners)
self.sticky_edges.x[:] = [xmin, xmax]
self.sticky_edges.y[:] = [ymin, ymax]
if self.axes._autoscaleXon:
self.axes.set_xlim((xmin, xmax), auto=None)
if self.axes._autoscaleYon:
self.axes.set_ylim((ymin, ymax), auto=None)
self.stale = True
def get_extent(self):
"""Return the image extent as tuple (left, right, bottom, top)."""
if self._extent is not None:
return self._extent
else:
sz = self.get_size()
numrows, numcols = sz
if self.origin == 'upper':
return (-0.5, numcols-0.5, numrows-0.5, -0.5)
else:
return (-0.5, numcols-0.5, -0.5, numrows-0.5)
def get_cursor_data(self, event):
"""
Return the image value at the event position or *None* if the event is
outside the image.
See Also
--------
matplotlib.artist.Artist.get_cursor_data
"""
xmin, xmax, ymin, ymax = self.get_extent()
if self.origin == 'upper':
ymin, ymax = ymax, ymin
arr = self.get_array()
data_extent = Bbox([[ymin, xmin], [ymax, xmax]])
array_extent = Bbox([[0, 0], arr.shape[:2]])
trans = BboxTransform(boxin=data_extent, boxout=array_extent)
point = trans.transform([event.ydata, event.xdata])
if any(np.isnan(point)):
return None
i, j = point.astype(int)
# Clip the coordinates at array bounds
if not (0 <= i < arr.shape[0]) or not (0 <= j < arr.shape[1]):
return None
else:
return arr[i, j]
def format_cursor_data(self, data):
if np.ndim(data) == 0 and self.colorbar:
return (
"["
+ cbook.strip_math(
self.colorbar.formatter.format_data_short(data)).strip()
+ "]")
else:
return super().format_cursor_data(data)
class NonUniformImage(AxesImage):
def __init__(self, ax, *, interpolation='nearest', **kwargs):
"""
Parameters
----------
interpolation : {'nearest', 'bilinear'}, default: 'nearest'
**kwargs
All other keyword arguments are identical to those of `.AxesImage`.
"""
super().__init__(ax, **kwargs)
self.set_interpolation(interpolation)
def _check_unsampled_image(self):
"""Return False. Do not use unsampled image."""
return False
is_grayscale = cbook._deprecate_privatize_attribute("3.3")
def make_image(self, renderer, magnification=1.0, unsampled=False):
# docstring inherited
if self._A is None:
raise RuntimeError('You must first set the image array')
if unsampled:
raise ValueError('unsampled not supported on NonUniformImage')
A = self._A
if A.ndim == 2:
if A.dtype != np.uint8:
A = self.to_rgba(A, bytes=True)
self._is_grayscale = self.cmap.is_gray()
else:
A = np.repeat(A[:, :, np.newaxis], 4, 2)
A[:, :, 3] = 255
self._is_grayscale = True
else:
if A.dtype != np.uint8:
A = (255*A).astype(np.uint8)
if A.shape[2] == 3:
B = np.zeros(tuple([*A.shape[0:2], 4]), np.uint8)
B[:, :, 0:3] = A
B[:, :, 3] = 255
A = B
self._is_grayscale = False
vl = self.axes.viewLim
l, b, r, t = self.axes.bbox.extents
width = (round(r) + 0.5) - (round(l) - 0.5)
height = (round(t) + 0.5) - (round(b) - 0.5)
width *= magnification
height *= magnification
im = _image.pcolor(self._Ax, self._Ay, A,
int(height), int(width),
(vl.x0, vl.x1, vl.y0, vl.y1),
_interpd_[self._interpolation])
return im, l, b, IdentityTransform()
def set_data(self, x, y, A):
"""
Set the grid for the pixel centers, and the pixel values.
Parameters
----------
x, y : 1D array-like
Monotonic arrays of shapes (N,) and (M,), respectively, specifying
pixel centers.
A : array-like
(M, N) ndarray or masked array of values to be colormapped, or
(M, N, 3) RGB array, or (M, N, 4) RGBA array.
"""
x = np.array(x, np.float32)
y = np.array(y, np.float32)
A = cbook.safe_masked_invalid(A, copy=True)
if not (x.ndim == y.ndim == 1 and A.shape[0:2] == y.shape + x.shape):
raise TypeError("Axes don't match array shape")
if A.ndim not in [2, 3]:
raise TypeError("Can only plot 2D or 3D data")
if A.ndim == 3 and A.shape[2] not in [1, 3, 4]:
raise TypeError("3D arrays must have three (RGB) "
"or four (RGBA) color components")
if A.ndim == 3 and A.shape[2] == 1:
A = A.squeeze(axis=-1)
self._A = A
self._Ax = x
self._Ay = y
self._imcache = None
self.stale = True
def set_array(self, *args):
raise NotImplementedError('Method not supported')
def set_interpolation(self, s):
"""
Parameters
----------
s : {'nearest', 'bilinear'} or None
If None, use :rc:`image.interpolation`.
"""
if s is not None and s not in ('nearest', 'bilinear'):
raise NotImplementedError('Only nearest neighbor and '
'bilinear interpolations are supported')
AxesImage.set_interpolation(self, s)
def get_extent(self):
if self._A is None:
raise RuntimeError('Must set data first')
return self._Ax[0], self._Ax[-1], self._Ay[0], self._Ay[-1]
def set_filternorm(self, s):
pass
def set_filterrad(self, s):
pass
def set_norm(self, norm):
if self._A is not None:
raise RuntimeError('Cannot change colors after loading data')
super().set_norm(norm)
def set_cmap(self, cmap):
if self._A is not None:
raise RuntimeError('Cannot change colors after loading data')
super().set_cmap(cmap)
class PcolorImage(AxesImage):
"""
Make a pcolor-style plot with an irregular rectangular grid.
This uses a variation of the original irregular image code,
and it is used by pcolorfast for the corresponding grid type.
"""
def __init__(self, ax,
x=None,
y=None,
A=None,
cmap=None,
norm=None,
**kwargs
):
"""
Parameters
----------
ax : `~.axes.Axes`
The axes the image will belong to.
x, y : 1D array-like, optional
Monotonic arrays of length N+1 and M+1, respectively, specifying
rectangle boundaries. If not given, will default to
``range(N + 1)`` and ``range(M + 1)``, respectively.
A : array-like
The data to be color-coded. The interpretation depends on the
shape:
- (M, N) ndarray or masked array: values to be colormapped
- (M, N, 3): RGB array
- (M, N, 4): RGBA array
cmap : str or `~matplotlib.colors.Colormap`, default: :rc:`image.cmap`
The Colormap instance or registered colormap name used to map
scalar data to colors.
norm : `~matplotlib.colors.Normalize`
Maps luminance to 0-1.
**kwargs : `.Artist` properties
"""
super().__init__(ax, norm=norm, cmap=cmap)
self.update(kwargs)
if A is not None:
self.set_data(x, y, A)
is_grayscale = cbook._deprecate_privatize_attribute("3.3")
def make_image(self, renderer, magnification=1.0, unsampled=False):
# docstring inherited
if self._A is None:
raise RuntimeError('You must first set the image array')
if unsampled:
raise ValueError('unsampled not supported on PColorImage')
fc = self.axes.patch.get_facecolor()
bg = mcolors.to_rgba(fc, 0)
bg = (np.array(bg)*255).astype(np.uint8)
l, b, r, t = self.axes.bbox.extents
width = (round(r) + 0.5) - (round(l) - 0.5)
height = (round(t) + 0.5) - (round(b) - 0.5)
width = int(round(width * magnification))
height = int(round(height * magnification))
if self._rgbacache is None:
A = self.to_rgba(self._A, bytes=True)
self._rgbacache = A
if self._A.ndim == 2:
self._is_grayscale = self.cmap.is_gray()
else:
A = self._rgbacache
vl = self.axes.viewLim
im = _image.pcolor2(self._Ax, self._Ay, A,
height,
width,
(vl.x0, vl.x1, vl.y0, vl.y1),
bg)
return im, l, b, IdentityTransform()
def _check_unsampled_image(self):
return False
def set_data(self, x, y, A):
"""
Set the grid for the rectangle boundaries, and the data values.
Parameters
----------
x, y : 1D array-like, optional
Monotonic arrays of length N+1 and M+1, respectively, specifying
rectangle boundaries. If not given, will default to
``range(N + 1)`` and ``range(M + 1)``, respectively.
A : array-like
The data to be color-coded. The interpretation depends on the
shape:
- (M, N) ndarray or masked array: values to be colormapped
- (M, N, 3): RGB array
- (M, N, 4): RGBA array
"""
A = cbook.safe_masked_invalid(A, copy=True)
if x is None:
x = np.arange(0, A.shape[1]+1, dtype=np.float64)
else:
x = np.array(x, np.float64).ravel()
if y is None:
y = np.arange(0, A.shape[0]+1, dtype=np.float64)
else:
y = np.array(y, np.float64).ravel()
if A.shape[:2] != (y.size-1, x.size-1):
raise ValueError(
"Axes don't match array shape. Got %s, expected %s." %
(A.shape[:2], (y.size - 1, x.size - 1)))
if A.ndim not in [2, 3]:
raise ValueError("A must be 2D or 3D")
if A.ndim == 3 and A.shape[2] == 1:
A = A.squeeze(axis=-1)
self._is_grayscale = False
if A.ndim == 3:
if A.shape[2] in [3, 4]:
if ((A[:, :, 0] == A[:, :, 1]).all() and
(A[:, :, 0] == A[:, :, 2]).all()):
self._is_grayscale = True
else:
raise ValueError("3D arrays must have RGB or RGBA as last dim")
# For efficient cursor readout, ensure x and y are increasing.
if x[-1] < x[0]:
x = x[::-1]
A = A[:, ::-1]
if y[-1] < y[0]:
y = y[::-1]
A = A[::-1]
self._A = A
self._Ax = x
self._Ay = y
self._rgbacache = None
self.stale = True
def set_array(self, *args):
raise NotImplementedError('Method not supported')
def get_cursor_data(self, event):
# docstring inherited
x, y = event.xdata, event.ydata
if (x < self._Ax[0] or x > self._Ax[-1] or
y < self._Ay[0] or y > self._Ay[-1]):
return None
j = np.searchsorted(self._Ax, x) - 1
i = np.searchsorted(self._Ay, y) - 1
try:
return self._A[i, j]
except IndexError:
return None
class FigureImage(_ImageBase):
"""An image attached to a figure."""
zorder = 0
_interpolation = 'nearest'
def __init__(self, fig,
cmap=None,
norm=None,
offsetx=0,
offsety=0,
origin=None,
**kwargs
):
"""
cmap is a colors.Colormap instance
norm is a colors.Normalize instance to map luminance to 0-1
kwargs are an optional list of Artist keyword args
"""
super().__init__(
None,
norm=norm,
cmap=cmap,
origin=origin
)
self.figure = fig
self.ox = offsetx
self.oy = offsety
self.update(kwargs)
self.magnification = 1.0
def get_extent(self):
"""Return the image extent as tuple (left, right, bottom, top)."""
numrows, numcols = self.get_size()
return (-0.5 + self.ox, numcols-0.5 + self.ox,
-0.5 + self.oy, numrows-0.5 + self.oy)
def make_image(self, renderer, magnification=1.0, unsampled=False):
# docstring inherited
fac = renderer.dpi/self.figure.dpi
# fac here is to account for pdf, eps, svg backends where
# figure.dpi is set to 72. This means we need to scale the
# image (using magnification) and offset it appropriately.
bbox = Bbox([[self.ox/fac, self.oy/fac],
[(self.ox/fac + self._A.shape[1]),
(self.oy/fac + self._A.shape[0])]])
width, height = self.figure.get_size_inches()
width *= renderer.dpi
height *= renderer.dpi
clip = Bbox([[0, 0], [width, height]])
return self._make_image(
self._A, bbox, bbox, clip, magnification=magnification / fac,
unsampled=unsampled, round_to_pixel_border=False)
def set_data(self, A):
"""Set the image array."""
cm.ScalarMappable.set_array(self,
cbook.safe_masked_invalid(A, copy=True))
self.stale = True
class BboxImage(_ImageBase):
"""The Image class whose size is determined by the given bbox."""
def __init__(self, bbox,
cmap=None,
norm=None,
interpolation=None,
origin=None,
filternorm=True,
filterrad=4.0,
resample=False,
**kwargs
):
"""
cmap is a colors.Colormap instance
norm is a colors.Normalize instance to map luminance to 0-1
kwargs are an optional list of Artist keyword args
"""
super().__init__(
None,
cmap=cmap,
norm=norm,
interpolation=interpolation,
origin=origin,
filternorm=filternorm,
filterrad=filterrad,
resample=resample,
**kwargs
)
self.bbox = bbox
self._transform = IdentityTransform()
def get_transform(self):
return self._transform
def get_window_extent(self, renderer=None):
if renderer is None:
renderer = self.get_figure()._cachedRenderer
if isinstance(self.bbox, BboxBase):
return self.bbox
elif callable(self.bbox):
return self.bbox(renderer)
else:
raise ValueError("Unknown type of bbox")
def contains(self, mouseevent):
"""Test whether the mouse event occurred within the image."""
inside, info = self._default_contains(mouseevent)
if inside is not None:
return inside, info
if not self.get_visible(): # or self.get_figure()._renderer is None:
return False, {}
x, y = mouseevent.x, mouseevent.y
inside = self.get_window_extent().contains(x, y)
return inside, {}
def make_image(self, renderer, magnification=1.0, unsampled=False):
# docstring inherited
width, height = renderer.get_canvas_width_height()
bbox_in = self.get_window_extent(renderer).frozen()
bbox_in._points /= [width, height]
bbox_out = self.get_window_extent(renderer)
clip = Bbox([[0, 0], [width, height]])
self._transform = BboxTransform(Bbox([[0, 0], [1, 1]]), clip)
return self._make_image(
self._A,
bbox_in, bbox_out, clip, magnification, unsampled=unsampled)
def imread(fname, format=None):
"""
Read an image from a file into an array.
Parameters
----------
fname : str or file-like
The image file to read: a filename, a URL or a file-like object opened
in read-binary mode.
format : str, optional
The image file format assumed for reading the data. If not
given, the format is deduced from the filename. If nothing can
be deduced, PNG is tried.
Returns
-------
`numpy.array`
The image data. The returned array has shape
- (M, N) for grayscale images.
- (M, N, 3) for RGB images.
- (M, N, 4) for RGBA images.
"""
# hide imports to speed initial import on systems with slow linkers
from urllib import parse
if format is None:
if isinstance(fname, str):
parsed = parse.urlparse(fname)
# If the string is a URL (Windows paths appear as if they have a
# length-1 scheme), assume png.
if len(parsed.scheme) > 1:
ext = 'png'
else:
ext = Path(fname).suffix.lower()[1:]
elif hasattr(fname, 'geturl'): # Returned by urlopen().
# We could try to parse the url's path and use the extension, but
# returning png is consistent with the block above. Note that this
# if clause has to come before checking for fname.name as
# urlopen("file:///...") also has a name attribute (with the fixed
# value "<urllib response>").
ext = 'png'
elif hasattr(fname, 'name'):
ext = Path(fname.name).suffix.lower()[1:]
else:
ext = 'png'
else:
ext = format
img_open = (
PIL.PngImagePlugin.PngImageFile if ext == 'png' else PIL.Image.open)
if isinstance(fname, str):
parsed = parse.urlparse(fname)
if len(parsed.scheme) > 1: # Pillow doesn't handle URLs directly.
# hide imports to speed initial import on systems with slow linkers
from urllib import request
ssl_ctx = mpl._get_ssl_context()
if ssl_ctx is None:
_log.debug(
"Could not get certifi ssl context, https may not work."
)
with request.urlopen(fname, context=ssl_ctx) as response:
import io
try:
response.seek(0)
except (AttributeError, io.UnsupportedOperation):
response = io.BytesIO(response.read())
return imread(response, format=ext)
with img_open(fname) as image:
return (_pil_png_to_float_array(image)
if isinstance(image, PIL.PngImagePlugin.PngImageFile) else
pil_to_array(image))
def imsave(fname, arr, vmin=None, vmax=None, cmap=None, format=None,
origin=None, dpi=100, *, metadata=None, pil_kwargs=None):
"""
Save an array as an image file.
Parameters
----------
fname : str or path-like or file-like
A path or a file-like object to store the image in.
If *format* is not set, then the output format is inferred from the
extension of *fname*, if any, and from :rc:`savefig.format` otherwise.
If *format* is set, it determines the output format.
arr : array-like
The image data. The shape can be one of
MxN (luminance), MxNx3 (RGB) or MxNx4 (RGBA).
vmin, vmax : float, optional
*vmin* and *vmax* set the color scaling for the image by fixing the
values that map to the colormap color limits. If either *vmin*
or *vmax* is None, that limit is determined from the *arr*
min/max value.
cmap : str or `~matplotlib.colors.Colormap`, default: :rc:`image.cmap`
A Colormap instance or registered colormap name. The colormap
maps scalar data to colors. It is ignored for RGB(A) data.
format : str, optional
The file format, e.g. 'png', 'pdf', 'svg', ... The behavior when this
is unset is documented under *fname*.
origin : {'upper', 'lower'}, default: :rc:`image.origin`
Indicates whether the ``(0, 0)`` index of the array is in the upper
left or lower left corner of the axes.
dpi : float
The DPI to store in the metadata of the file. This does not affect the
resolution of the output image. Depending on file format, this may be
rounded to the nearest integer.
metadata : dict, optional
Metadata in the image file. The supported keys depend on the output
format, see the documentation of the respective backends for more
information.
pil_kwargs : dict, optional
Keyword arguments passed to `PIL.Image.Image.save`. If the 'pnginfo'
key is present, it completely overrides *metadata*, including the
default 'Software' key.
"""
from matplotlib.figure import Figure
if isinstance(fname, os.PathLike):
fname = os.fspath(fname)
if format is None:
format = (Path(fname).suffix[1:] if isinstance(fname, str)
else mpl.rcParams["savefig.format"]).lower()
if format in ["pdf", "ps", "eps", "svg"]:
# Vector formats that are not handled by PIL.
if pil_kwargs is not None:
raise ValueError(
f"Cannot use 'pil_kwargs' when saving to {format}")
fig = Figure(dpi=dpi, frameon=False)
fig.figimage(arr, cmap=cmap, vmin=vmin, vmax=vmax, origin=origin,
resize=True)
fig.savefig(fname, dpi=dpi, format=format, transparent=True,
metadata=metadata)
else:
# Don't bother creating an image; this avoids rounding errors on the
# size when dividing and then multiplying by dpi.
sm = cm.ScalarMappable(cmap=cmap)
sm.set_clim(vmin, vmax)
if origin is None:
origin = mpl.rcParams["image.origin"]
if origin == "lower":
arr = arr[::-1]
if (isinstance(arr, memoryview) and arr.format == "B"
and arr.ndim == 3 and arr.shape[-1] == 4):
# Such an ``arr`` would also be handled fine by sm.to_rgba (after
# casting with asarray), but it is useful to special-case it
# because that's what backend_agg passes, and can be in fact used
# as is, saving a few operations.
rgba = arr
else:
rgba = sm.to_rgba(arr, bytes=True)
if pil_kwargs is None:
pil_kwargs = {}
pil_shape = (rgba.shape[1], rgba.shape[0])
image = PIL.Image.frombuffer(
"RGBA", pil_shape, rgba, "raw", "RGBA", 0, 1)
if format == "png":
# Only use the metadata kwarg if pnginfo is not set, because the
# semantics of duplicate keys in pnginfo is unclear.
if "pnginfo" in pil_kwargs:
if metadata:
cbook._warn_external("'metadata' is overridden by the "
"'pnginfo' entry in 'pil_kwargs'.")
else:
metadata = {
"Software": (f"Matplotlib version{mpl.__version__}, "
f"https://matplotlib.org/"),
**(metadata if metadata is not None else {}),
}
pil_kwargs["pnginfo"] = pnginfo = PIL.PngImagePlugin.PngInfo()
for k, v in metadata.items():
if v is not None:
pnginfo.add_text(k, v)
if format in ["jpg", "jpeg"]:
format = "jpeg" # Pillow doesn't recognize "jpg".
facecolor = mpl.rcParams["savefig.facecolor"]
if cbook._str_equal(facecolor, "auto"):
facecolor = mpl.rcParams["figure.facecolor"]
color = tuple(int(x * 255) for x in mcolors.to_rgb(facecolor))
background = PIL.Image.new("RGB", pil_shape, color)
background.paste(image, image)
image = background
pil_kwargs.setdefault("format", format)
pil_kwargs.setdefault("dpi", (dpi, dpi))
image.save(fname, **pil_kwargs)
def pil_to_array(pilImage):
"""
Load a `PIL image`_ and return it as a numpy int array.
.. _PIL image: https://pillow.readthedocs.io/en/latest/reference/Image.html
Returns
-------
numpy.array
The array shape depends on the image type:
- (M, N) for grayscale images.
- (M, N, 3) for RGB images.
- (M, N, 4) for RGBA images.
"""
if pilImage.mode in ['RGBA', 'RGBX', 'RGB', 'L']:
# return MxNx4 RGBA, MxNx3 RBA, or MxN luminance array
return np.asarray(pilImage)
elif pilImage.mode.startswith('I;16'):
# return MxN luminance array of uint16
raw = pilImage.tobytes('raw', pilImage.mode)
if pilImage.mode.endswith('B'):
x = np.frombuffer(raw, '>u2')
else:
x = np.frombuffer(raw, '<u2')
return x.reshape(pilImage.size[::-1]).astype('=u2')
else: # try to convert to an rgba image
try:
pilImage = pilImage.convert('RGBA')
except ValueError as err:
raise RuntimeError('Unknown image mode') from err
return np.asarray(pilImage) # return MxNx4 RGBA array
def _pil_png_to_float_array(pil_png):
"""Convert a PIL `PNGImageFile` to a 0-1 float array."""
# Unlike pil_to_array this converts to 0-1 float32s for backcompat with the
# old libpng-based loader.
# The supported rawmodes are from PIL.PngImagePlugin._MODES. When
# mode == "RGB(A)", the 16-bit raw data has already been coarsened to 8-bit
# by Pillow.
mode = pil_png.mode
rawmode = pil_png.png.im_rawmode
if rawmode == "1": # Grayscale.
return np.asarray(pil_png, np.float32)
if rawmode == "L;2": # Grayscale.
return np.divide(pil_png, 2**2 - 1, dtype=np.float32)
if rawmode == "L;4": # Grayscale.
return np.divide(pil_png, 2**4 - 1, dtype=np.float32)
if rawmode == "L": # Grayscale.
return np.divide(pil_png, 2**8 - 1, dtype=np.float32)
if rawmode == "I;16B": # Grayscale.
return np.divide(pil_png, 2**16 - 1, dtype=np.float32)
if mode == "RGB": # RGB.
return np.divide(pil_png, 2**8 - 1, dtype=np.float32)
if mode == "P": # Palette.
return np.divide(pil_png.convert("RGBA"), 2**8 - 1, dtype=np.float32)
if mode == "LA": # Grayscale + alpha.
return np.divide(pil_png.convert("RGBA"), 2**8 - 1, dtype=np.float32)
if mode == "RGBA": # RGBA.
return np.divide(pil_png, 2**8 - 1, dtype=np.float32)
raise ValueError(f"Unknown PIL rawmode: {rawmode}")
def thumbnail(infile, thumbfile, scale=0.1, interpolation='bilinear',
preview=False):
"""
Make a thumbnail of image in *infile* with output filename *thumbfile*.
See :doc:`/gallery/misc/image_thumbnail_sgskip`.
Parameters
----------
infile : str or file-like
The image file. Matplotlib relies on Pillow_ for image reading, and
thus supports a wide range of file formats, including PNG, JPG, TIFF
and others.
.. _Pillow: https://python-pillow.org/
thumbfile : str or file-like
The thumbnail filename.
scale : float, default: 0.1
The scale factor for the thumbnail.
interpolation : str, default: 'bilinear'
The interpolation scheme used in the resampling. See the
*interpolation* parameter of `~.Axes.imshow` for possible values.
preview : bool, default: False
If True, the default backend (presumably a user interface
backend) will be used which will cause a figure to be raised if
`~matplotlib.pyplot.show` is called. If it is False, the figure is
created using `.FigureCanvasBase` and the drawing backend is selected
as `.Figure.savefig` would normally do.
Returns
-------
`~.figure.Figure`
The figure instance containing the thumbnail.
"""
im = imread(infile)
rows, cols, depth = im.shape
# This doesn't really matter (it cancels in the end) but the API needs it.
dpi = 100
height = rows / dpi * scale
width = cols / dpi * scale
if preview:
# Let the UI backend do everything.
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(width, height), dpi=dpi)
else:
from matplotlib.figure import Figure
fig = Figure(figsize=(width, height), dpi=dpi)
FigureCanvasBase(fig)
ax = fig.add_axes([0, 0, 1, 1], aspect='auto',
frameon=False, xticks=[], yticks=[])
ax.imshow(im, aspect='auto', resample=True, interpolation=interpolation)
fig.savefig(thumbfile, dpi=dpi)
return fig