test_lines.py
8.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
"""
Tests specific to the lines module.
"""
import itertools
import timeit
from cycler import cycler
import numpy as np
from numpy.testing import assert_array_equal
import pytest
import matplotlib
import matplotlib.lines as mlines
from matplotlib.markers import MarkerStyle
from matplotlib.path import Path
import matplotlib.pyplot as plt
from matplotlib.testing.decorators import image_comparison, check_figures_equal
def test_segment_hits():
"""Test a problematic case."""
cx, cy = 553, 902
x, y = np.array([553., 553.]), np.array([95., 947.])
radius = 6.94
assert_array_equal(mlines.segment_hits(cx, cy, x, y, radius), [0])
# Runtimes on a loaded system are inherently flaky. Not so much that a rerun
# won't help, hopefully.
@pytest.mark.flaky(reruns=3)
def test_invisible_Line_rendering():
"""
GitHub issue #1256 identified a bug in Line.draw method
Despite visibility attribute set to False, the draw method was not
returning early enough and some pre-rendering code was executed
though not necessary.
Consequence was an excessive draw time for invisible Line instances
holding a large number of points (Npts> 10**6)
"""
# Creates big x and y data:
N = 10**7
x = np.linspace(0, 1, N)
y = np.random.normal(size=N)
# Create a plot figure:
fig = plt.figure()
ax = plt.subplot(111)
# Create a "big" Line instance:
l = mlines.Line2D(x, y)
l.set_visible(False)
# but don't add it to the Axis instance `ax`
# [here Interactive panning and zooming is pretty responsive]
# Time the canvas drawing:
t_no_line = min(timeit.repeat(fig.canvas.draw, number=1, repeat=3))
# (gives about 25 ms)
# Add the big invisible Line:
ax.add_line(l)
# [Now interactive panning and zooming is very slow]
# Time the canvas drawing:
t_invisible_line = min(timeit.repeat(fig.canvas.draw, number=1, repeat=3))
# gives about 290 ms for N = 10**7 pts
slowdown_factor = t_invisible_line / t_no_line
slowdown_threshold = 2 # trying to avoid false positive failures
assert slowdown_factor < slowdown_threshold
def test_set_line_coll_dash():
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
np.random.seed(0)
# Testing setting linestyles for line collections.
# This should not produce an error.
ax.contour(np.random.randn(20, 30), linestyles=[(0, (3, 3))])
@image_comparison(['line_dashes'], remove_text=True)
def test_line_dashes():
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(range(10), linestyle=(0, (3, 3)), lw=5)
def test_line_colors():
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(range(10), color='none')
ax.plot(range(10), color='r')
ax.plot(range(10), color='.3')
ax.plot(range(10), color=(1, 0, 0, 1))
ax.plot(range(10), color=(1, 0, 0))
fig.canvas.draw()
def test_linestyle_variants():
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
for ls in ["-", "solid", "--", "dashed",
"-.", "dashdot", ":", "dotted"]:
ax.plot(range(10), linestyle=ls)
fig.canvas.draw()
def test_valid_linestyles():
line = mlines.Line2D([], [])
with pytest.raises(ValueError):
line.set_linestyle('aardvark')
@image_comparison(['drawstyle_variants.png'], remove_text=True)
def test_drawstyle_variants():
fig, axs = plt.subplots(6)
dss = ["default", "steps-mid", "steps-pre", "steps-post", "steps", None]
# We want to check that drawstyles are properly handled even for very long
# lines (for which the subslice optimization is on); however, we need
# to zoom in so that the difference between the drawstyles is actually
# visible.
for ax, ds in zip(axs.flat, dss):
ax.plot(range(2000), drawstyle=ds)
ax.set(xlim=(0, 2), ylim=(0, 2))
def test_valid_drawstyles():
line = mlines.Line2D([], [])
with pytest.raises(ValueError):
line.set_drawstyle('foobar')
def test_set_drawstyle():
x = np.linspace(0, 2*np.pi, 10)
y = np.sin(x)
fig, ax = plt.subplots()
line, = ax.plot(x, y)
line.set_drawstyle("steps-pre")
assert len(line.get_path().vertices) == 2*len(x)-1
line.set_drawstyle("default")
assert len(line.get_path().vertices) == len(x)
@image_comparison(['line_collection_dashes'], remove_text=True, style='mpl20')
def test_set_line_coll_dash_image():
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
np.random.seed(0)
ax.contour(np.random.randn(20, 30), linestyles=[(0, (3, 3))])
@image_comparison(['marker_fill_styles.png'], remove_text=True)
def test_marker_fill_styles():
colors = itertools.cycle([[0, 0, 1], 'g', '#ff0000', 'c', 'm', 'y',
np.array([0, 0, 0])])
altcolor = 'lightgreen'
y = np.array([1, 1])
x = np.array([0, 9])
fig, ax = plt.subplots()
for j, marker in enumerate(mlines.Line2D.filled_markers):
for i, fs in enumerate(mlines.Line2D.fillStyles):
color = next(colors)
ax.plot(j * 10 + x, y + i + .5 * (j % 2),
marker=marker,
markersize=20,
markerfacecoloralt=altcolor,
fillstyle=fs,
label=fs,
linewidth=5,
color=color,
markeredgecolor=color,
markeredgewidth=2)
ax.set_ylim([0, 7.5])
ax.set_xlim([-5, 155])
def test_markerfacecolor_fillstyle():
"""Test that markerfacecolor does not override fillstyle='none'."""
l, = plt.plot([1, 3, 2], marker=MarkerStyle('o', fillstyle='none'),
markerfacecolor='red')
assert l.get_fillstyle() == 'none'
assert l.get_markerfacecolor() == 'none'
@image_comparison(['scaled_lines'], style='default')
def test_lw_scaling():
th = np.linspace(0, 32)
fig, ax = plt.subplots()
lins_styles = ['dashed', 'dotted', 'dashdot']
cy = cycler(matplotlib.rcParams['axes.prop_cycle'])
for j, (ls, sty) in enumerate(zip(lins_styles, cy)):
for lw in np.linspace(.5, 10, 10):
ax.plot(th, j*np.ones(50) + .1 * lw, linestyle=ls, lw=lw, **sty)
def test_nan_is_sorted():
line = mlines.Line2D([], [])
assert line._is_sorted(np.array([1, 2, 3]))
assert line._is_sorted(np.array([1, np.nan, 3]))
assert not line._is_sorted([3, 5] + [np.nan] * 100 + [0, 2])
@check_figures_equal()
def test_step_markers(fig_test, fig_ref):
fig_test.subplots().step([0, 1], "-o")
fig_ref.subplots().plot([0, 0, 1], [0, 1, 1], "-o", markevery=[0, 2])
@check_figures_equal(extensions=('png',))
def test_markevery(fig_test, fig_ref):
np.random.seed(42)
t = np.linspace(0, 3, 14)
y = np.random.rand(len(t))
casesA = [None, 4, (2, 5), [1, 5, 11],
[0, -1], slice(5, 10, 2), 0.3, (0.3, 0.4),
np.arange(len(t))[y > 0.5]]
casesB = ["11111111111111", "10001000100010", "00100001000010",
"01000100000100", "10000000000001", "00000101010000",
"11011011011110", "01010011011101", "01110001110110"]
axsA = fig_ref.subplots(3, 3)
axsB = fig_test.subplots(3, 3)
for ax, case in zip(axsA.flat, casesA):
ax.plot(t, y, "-gD", markevery=case)
for ax, case in zip(axsB.flat, casesB):
me = np.array(list(case)).astype(int).astype(bool)
ax.plot(t, y, "-gD", markevery=me)
def test_marker_as_markerstyle():
fig, ax = plt.subplots()
line, = ax.plot([2, 4, 3], marker=MarkerStyle("D"))
fig.canvas.draw()
assert line.get_marker() == "D"
# continue with smoke tests:
line.set_marker("s")
fig.canvas.draw()
line.set_marker(MarkerStyle("o"))
fig.canvas.draw()
# test Path roundtrip
triangle1 = Path([[-1., -1.], [1., -1.], [0., 2.], [0., 0.]], closed=True)
line2, = ax.plot([1, 3, 2], marker=MarkerStyle(triangle1), ms=22)
line3, = ax.plot([0, 2, 1], marker=triangle1, ms=22)
assert_array_equal(line2.get_marker().vertices, triangle1.vertices)
assert_array_equal(line3.get_marker().vertices, triangle1.vertices)
@check_figures_equal()
def test_odd_dashes(fig_test, fig_ref):
fig_test.add_subplot().plot([1, 2], dashes=[1, 2, 3])
fig_ref.add_subplot().plot([1, 2], dashes=[1, 2, 3, 1, 2, 3])