_axes.py
305.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
import functools
import itertools
import logging
import math
from numbers import Number
import numpy as np
from numpy import ma
import matplotlib.category # Register category unit converter as side-effect.
import matplotlib.cbook as cbook
import matplotlib.collections as mcoll
import matplotlib.colors as mcolors
import matplotlib.contour as mcontour
import matplotlib.dates # Register date unit converter as side-effect.
import matplotlib.docstring as docstring
import matplotlib.image as mimage
import matplotlib.legend as mlegend
import matplotlib.lines as mlines
import matplotlib.markers as mmarkers
import matplotlib.mlab as mlab
import matplotlib.patches as mpatches
import matplotlib.path as mpath
import matplotlib.quiver as mquiver
import matplotlib.stackplot as mstack
import matplotlib.streamplot as mstream
import matplotlib.table as mtable
import matplotlib.text as mtext
import matplotlib.ticker as mticker
import matplotlib.transforms as mtransforms
import matplotlib.tri as mtri
from matplotlib import _preprocess_data, rcParams
from matplotlib.axes._base import _AxesBase, _process_plot_format
from matplotlib.axes._secondary_axes import SecondaryAxis
from matplotlib.container import BarContainer, ErrorbarContainer, StemContainer
_log = logging.getLogger(__name__)
def _make_inset_locator(bounds, trans, parent):
"""
Helper function to locate inset axes, used in
`.Axes.inset_axes`.
A locator gets used in `Axes.set_aspect` to override the default
locations... It is a function that takes an axes object and
a renderer and tells `set_aspect` where it is to be placed.
Here *rect* is a rectangle [l, b, w, h] that specifies the
location for the axes in the transform given by *trans* on the
*parent*.
"""
_bounds = mtransforms.Bbox.from_bounds(*bounds)
_trans = trans
_parent = parent
def inset_locator(ax, renderer):
bbox = _bounds
bb = mtransforms.TransformedBbox(bbox, _trans)
tr = _parent.figure.transFigure.inverted()
bb = mtransforms.TransformedBbox(bb, tr)
return bb
return inset_locator
# The axes module contains all the wrappers to plotting functions.
# All the other methods should go in the _AxesBase class.
class Axes(_AxesBase):
"""
The `Axes` contains most of the figure elements: `~.axis.Axis`,
`~.axis.Tick`, `~.lines.Line2D`, `~.text.Text`, `~.patches.Polygon`, etc.,
and sets the coordinate system.
The `Axes` instance supports callbacks through a callbacks attribute which
is a `~.cbook.CallbackRegistry` instance. The events you can connect to
are 'xlim_changed' and 'ylim_changed' and the callback will be called with
func(*ax*) where *ax* is the `Axes` instance.
Attributes
----------
dataLim : `.Bbox`
The bounding box enclosing all data displayed in the Axes.
viewLim : `.Bbox`
The view limits in data coordinates.
"""
### Labelling, legend and texts
def get_title(self, loc="center"):
"""
Get an axes title.
Get one of the three available axes titles. The available titles
are positioned above the axes in the center, flush with the left
edge, and flush with the right edge.
Parameters
----------
loc : {'center', 'left', 'right'}, str, default: 'center'
Which title to return.
Returns
-------
str
The title text string.
"""
titles = {'left': self._left_title,
'center': self.title,
'right': self._right_title}
title = cbook._check_getitem(titles, loc=loc.lower())
return title.get_text()
def set_title(self, label, fontdict=None, loc=None, pad=None, *, y=None,
**kwargs):
"""
Set a title for the axes.
Set one of the three available axes titles. The available titles
are positioned above the axes in the center, flush with the left
edge, and flush with the right edge.
Parameters
----------
label : str
Text to use for the title
fontdict : dict
A dictionary controlling the appearance of the title text,
the default *fontdict* is::
{'fontsize': rcParams['axes.titlesize'],
'fontweight': rcParams['axes.titleweight'],
'color': rcParams['axes.titlecolor'],
'verticalalignment': 'baseline',
'horizontalalignment': loc}
loc : {'center', 'left', 'right'}, default: :rc:`axes.titlelocation`
Which title to set.
y : float, default: :rc:`axes.titley`
Vertical axes loation for the title (1.0 is the top). If
None (the default), y is determined automatically to avoid
decorators on the axes.
pad : float, default: :rc:`axes.titlepad`
The offset of the title from the top of the axes, in points.
Returns
-------
`.Text`
The matplotlib text instance representing the title
Other Parameters
----------------
**kwargs : `.Text` properties
Other keyword arguments are text properties, see `.Text` for a list
of valid text properties.
"""
if loc is None:
loc = rcParams['axes.titlelocation']
if y is None:
y = rcParams['axes.titley']
if y is None:
y = 1.0
else:
self._autotitlepos = False
kwargs['y'] = y
titles = {'left': self._left_title,
'center': self.title,
'right': self._right_title}
title = cbook._check_getitem(titles, loc=loc.lower())
default = {
'fontsize': rcParams['axes.titlesize'],
'fontweight': rcParams['axes.titleweight'],
'verticalalignment': 'baseline',
'horizontalalignment': loc.lower()}
titlecolor = rcParams['axes.titlecolor']
if not cbook._str_lower_equal(titlecolor, 'auto'):
default["color"] = titlecolor
if pad is None:
pad = rcParams['axes.titlepad']
self._set_title_offset_trans(float(pad))
title.set_text(label)
title.update(default)
if fontdict is not None:
title.update(fontdict)
title.update(kwargs)
return title
def get_xlabel(self):
"""
Get the xlabel text string.
"""
label = self.xaxis.get_label()
return label.get_text()
def set_xlabel(self, xlabel, fontdict=None, labelpad=None, *,
loc=None, **kwargs):
"""
Set the label for the x-axis.
Parameters
----------
xlabel : str
The label text.
labelpad : float, default: None
Spacing in points from the axes bounding box including ticks
and tick labels.
loc : {'left', 'center', 'right'}, default: :rc:`xaxis.labellocation`
The label position. This is a high-level alternative for passing
parameters *x* and *horizontalalignment*.
Other Parameters
----------------
**kwargs : `.Text` properties
`.Text` properties control the appearance of the label.
See Also
--------
text : Documents the properties supported by `.Text`.
"""
if labelpad is not None:
self.xaxis.labelpad = labelpad
protected_kw = ['x', 'horizontalalignment', 'ha']
if {*kwargs} & {*protected_kw}:
if loc is not None:
raise TypeError(f"Specifying 'loc' is disallowed when any of "
f"its corresponding low level keyword "
f"arguments ({protected_kw}) are also "
f"supplied")
loc = 'center'
else:
loc = loc if loc is not None else rcParams['xaxis.labellocation']
cbook._check_in_list(('left', 'center', 'right'), loc=loc)
if loc == 'left':
kwargs.update(x=0, horizontalalignment='left')
elif loc == 'right':
kwargs.update(x=1, horizontalalignment='right')
return self.xaxis.set_label_text(xlabel, fontdict, **kwargs)
def get_ylabel(self):
"""
Get the ylabel text string.
"""
label = self.yaxis.get_label()
return label.get_text()
def set_ylabel(self, ylabel, fontdict=None, labelpad=None, *,
loc=None, **kwargs):
"""
Set the label for the y-axis.
Parameters
----------
ylabel : str
The label text.
labelpad : float, default: None
Spacing in points from the axes bounding box including ticks
and tick labels.
loc : {'bottom', 'center', 'top'}, default: :rc:`yaxis.labellocation`
The label position. This is a high-level alternative for passing
parameters *y* and *horizontalalignment*.
Other Parameters
----------------
**kwargs : `.Text` properties
`.Text` properties control the appearance of the label.
See Also
--------
text : Documents the properties supported by `.Text`.
"""
if labelpad is not None:
self.yaxis.labelpad = labelpad
protected_kw = ['y', 'horizontalalignment', 'ha']
if {*kwargs} & {*protected_kw}:
if loc is not None:
raise TypeError(f"Specifying 'loc' is disallowed when any of "
f"its corresponding low level keyword "
f"arguments ({protected_kw}) are also "
f"supplied")
loc = 'center'
else:
loc = loc if loc is not None else rcParams['yaxis.labellocation']
cbook._check_in_list(('bottom', 'center', 'top'), loc=loc)
if loc == 'bottom':
kwargs.update(y=0, horizontalalignment='left')
elif loc == 'top':
kwargs.update(y=1, horizontalalignment='right')
return self.yaxis.set_label_text(ylabel, fontdict, **kwargs)
def get_legend_handles_labels(self, legend_handler_map=None):
"""
Return handles and labels for legend
``ax.legend()`` is equivalent to ::
h, l = ax.get_legend_handles_labels()
ax.legend(h, l)
"""
# pass through to legend.
handles, labels = mlegend._get_legend_handles_labels(
[self], legend_handler_map)
return handles, labels
@docstring.dedent_interpd
def legend(self, *args, **kwargs):
"""
Place a legend on the axes.
Call signatures::
legend()
legend(labels)
legend(handles, labels)
The call signatures correspond to three different ways how to use
this method.
**1. Automatic detection of elements to be shown in the legend**
The elements to be added to the legend are automatically determined,
when you do not pass in any extra arguments.
In this case, the labels are taken from the artist. You can specify
them either at artist creation or by calling the
:meth:`~.Artist.set_label` method on the artist::
line, = ax.plot([1, 2, 3], label='Inline label')
ax.legend()
or::
line, = ax.plot([1, 2, 3])
line.set_label('Label via method')
ax.legend()
Specific lines can be excluded from the automatic legend element
selection by defining a label starting with an underscore.
This is default for all artists, so calling `.Axes.legend` without
any arguments and without setting the labels manually will result in
no legend being drawn.
**2. Labeling existing plot elements**
To make a legend for lines which already exist on the axes
(via plot for instance), simply call this function with an iterable
of strings, one for each legend item. For example::
ax.plot([1, 2, 3])
ax.legend(['A simple line'])
Note: This way of using is discouraged, because the relation between
plot elements and labels is only implicit by their order and can
easily be mixed up.
**3. Explicitly defining the elements in the legend**
For full control of which artists have a legend entry, it is possible
to pass an iterable of legend artists followed by an iterable of
legend labels respectively::
legend((line1, line2, line3), ('label1', 'label2', 'label3'))
Parameters
----------
handles : sequence of `.Artist`, optional
A list of Artists (lines, patches) to be added to the legend.
Use this together with *labels*, if you need full control on what
is shown in the legend and the automatic mechanism described above
is not sufficient.
The length of handles and labels should be the same in this
case. If they are not, they are truncated to the smaller length.
labels : list of str, optional
A list of labels to show next to the artists.
Use this together with *handles*, if you need full control on what
is shown in the legend and the automatic mechanism described above
is not sufficient.
Returns
-------
`~matplotlib.legend.Legend`
Other Parameters
----------------
%(_legend_kw_doc)s
Notes
-----
Some artists are not supported by this function. See
:doc:`/tutorials/intermediate/legend_guide` for details.
Examples
--------
.. plot:: gallery/text_labels_and_annotations/legend.py
"""
handles, labels, extra_args, kwargs = mlegend._parse_legend_args(
[self],
*args,
**kwargs)
if len(extra_args):
raise TypeError('legend only accepts two non-keyword arguments')
self.legend_ = mlegend.Legend(self, handles, labels, **kwargs)
self.legend_._remove_method = self._remove_legend
return self.legend_
def _remove_legend(self, legend):
self.legend_ = None
def inset_axes(self, bounds, *, transform=None, zorder=5, **kwargs):
"""
Add a child inset axes to this existing axes.
Warnings
--------
This method is experimental as of 3.0, and the API may change.
Parameters
----------
bounds : [x0, y0, width, height]
Lower-left corner of inset axes, and its width and height.
transform : `.Transform`
Defaults to `ax.transAxes`, i.e. the units of *rect* are in
axes-relative coordinates.
zorder : number
Defaults to 5 (same as `.Axes.legend`). Adjust higher or lower
to change whether it is above or below data plotted on the
parent axes.
**kwargs
Other keyword arguments are passed on to the child `.Axes`.
Returns
-------
ax
The created `~.axes.Axes` instance.
Examples
--------
This example makes two inset axes, the first is in axes-relative
coordinates, and the second in data-coordinates::
fig, ax = plt.subplots()
ax.plot(range(10))
axin1 = ax.inset_axes([0.8, 0.1, 0.15, 0.15])
axin2 = ax.inset_axes(
[5, 7, 2.3, 2.3], transform=ax.transData)
"""
if transform is None:
transform = self.transAxes
kwargs.setdefault('label', 'inset_axes')
# This puts the rectangle into figure-relative coordinates.
inset_locator = _make_inset_locator(bounds, transform, self)
bb = inset_locator(None, None)
inset_ax = Axes(self.figure, bb.bounds, zorder=zorder, **kwargs)
# this locator lets the axes move if in data coordinates.
# it gets called in `ax.apply_aspect() (of all places)
inset_ax.set_axes_locator(inset_locator)
self.add_child_axes(inset_ax)
return inset_ax
def indicate_inset(self, bounds, inset_ax=None, *, transform=None,
facecolor='none', edgecolor='0.5', alpha=0.5,
zorder=4.99, **kwargs):
"""
Add an inset indicator to the axes. This is a rectangle on the plot
at the position indicated by *bounds* that optionally has lines that
connect the rectangle to an inset axes (`.Axes.inset_axes`).
Warnings
--------
This method is experimental as of 3.0, and the API may change.
Parameters
----------
bounds : [x0, y0, width, height]
Lower-left corner of rectangle to be marked, and its width
and height.
inset_ax : `.Axes`
An optional inset axes to draw connecting lines to. Two lines are
drawn connecting the indicator box to the inset axes on corners
chosen so as to not overlap with the indicator box.
transform : `.Transform`
Transform for the rectangle coordinates. Defaults to
`ax.transAxes`, i.e. the units of *rect* are in axes-relative
coordinates.
facecolor : color, default: 'none'
Facecolor of the rectangle.
edgecolor : color, default: '0.5'
Color of the rectangle and color of the connecting lines.
alpha : float, default: 0.5
Transparency of the rectangle and connector lines.
zorder : float, default: 4.99
Drawing order of the rectangle and connector lines. The default,
4.99, is just below the default level of inset axes.
**kwargs
Other keyword arguments are passed on to the `.Rectangle` patch:
%(Rectangle)s
Returns
-------
rectangle_patch : `.patches.Rectangle`
The indicator frame.
connector_lines : 4-tuple of `.patches.ConnectionPatch`
The four connector lines connecting to (lower_left, upper_left,
lower_right upper_right) corners of *inset_ax*. Two lines are
set with visibility to *False*, but the user can set the
visibility to True if the automatic choice is not deemed correct.
"""
# to make the axes connectors work, we need to apply the aspect to
# the parent axes.
self.apply_aspect()
if transform is None:
transform = self.transData
kwargs.setdefault('label', 'indicate_inset')
x, y, width, height = bounds
rectangle_patch = mpatches.Rectangle(
(x, y), width, height,
facecolor=facecolor, edgecolor=edgecolor, alpha=alpha,
zorder=zorder, transform=transform, **kwargs)
self.add_patch(rectangle_patch)
connects = []
if inset_ax is not None:
# connect the inset_axes to the rectangle
for xy_inset_ax in [(0, 0), (0, 1), (1, 0), (1, 1)]:
# inset_ax positions are in axes coordinates
# The 0, 1 values define the four edges if the inset_ax
# lower_left, upper_left, lower_right upper_right.
ex, ey = xy_inset_ax
if self.xaxis.get_inverted():
ex = 1 - ex
if self.yaxis.get_inverted():
ey = 1 - ey
xy_data = x + ex * width, y + ey * height
p = mpatches.ConnectionPatch(
xyA=xy_inset_ax, coordsA=inset_ax.transAxes,
xyB=xy_data, coordsB=self.transData,
arrowstyle="-", zorder=zorder,
edgecolor=edgecolor, alpha=alpha)
connects.append(p)
self.add_patch(p)
# decide which two of the lines to keep visible....
pos = inset_ax.get_position()
bboxins = pos.transformed(self.figure.transFigure)
rectbbox = mtransforms.Bbox.from_bounds(
*bounds
).transformed(transform)
x0 = rectbbox.x0 < bboxins.x0
x1 = rectbbox.x1 < bboxins.x1
y0 = rectbbox.y0 < bboxins.y0
y1 = rectbbox.y1 < bboxins.y1
connects[0].set_visible(x0 ^ y0)
connects[1].set_visible(x0 == y1)
connects[2].set_visible(x1 == y0)
connects[3].set_visible(x1 ^ y1)
return rectangle_patch, tuple(connects) if connects else None
def indicate_inset_zoom(self, inset_ax, **kwargs):
"""
Add an inset indicator rectangle to the axes based on the axis
limits for an *inset_ax* and draw connectors between *inset_ax*
and the rectangle.
Warnings
--------
This method is experimental as of 3.0, and the API may change.
Parameters
----------
inset_ax : `.Axes`
Inset axes to draw connecting lines to. Two lines are
drawn connecting the indicator box to the inset axes on corners
chosen so as to not overlap with the indicator box.
**kwargs
Other keyword arguments are passed on to `.Axes.indicate_inset`
Returns
-------
rectangle_patch : `.patches.Rectangle`
Rectangle artist.
connector_lines : 4-tuple of `.patches.ConnectionPatch`
Each of four connector lines coming from the rectangle drawn on
this axis, in the order lower left, upper left, lower right,
upper right.
Two are set with visibility to *False*, but the user can
set the visibility to *True* if the automatic choice is not deemed
correct.
"""
xlim = inset_ax.get_xlim()
ylim = inset_ax.get_ylim()
rect = (xlim[0], ylim[0], xlim[1] - xlim[0], ylim[1] - ylim[0])
return self.indicate_inset(rect, inset_ax, **kwargs)
@docstring.dedent_interpd
def secondary_xaxis(self, location, *, functions=None, **kwargs):
"""
Add a second x-axis to this axes.
For example if we want to have a second scale for the data plotted on
the xaxis.
%(_secax_docstring)s
Examples
--------
The main axis shows frequency, and the secondary axis shows period.
.. plot::
fig, ax = plt.subplots()
ax.loglog(range(1, 360, 5), range(1, 360, 5))
ax.set_xlabel('frequency [Hz]')
def invert(x):
return 1 / x
secax = ax.secondary_xaxis('top', functions=(invert, invert))
secax.set_xlabel('Period [s]')
plt.show()
"""
if location in ['top', 'bottom'] or isinstance(location, Number):
secondary_ax = SecondaryAxis(self, 'x', location, functions,
**kwargs)
self.add_child_axes(secondary_ax)
return secondary_ax
else:
raise ValueError('secondary_xaxis location must be either '
'a float or "top"/"bottom"')
@docstring.dedent_interpd
def secondary_yaxis(self, location, *, functions=None, **kwargs):
"""
Add a second y-axis to this axes.
For example if we want to have a second scale for the data plotted on
the yaxis.
%(_secax_docstring)s
Examples
--------
Add a secondary axes that converts from radians to degrees
.. plot::
fig, ax = plt.subplots()
ax.plot(range(1, 360, 5), range(1, 360, 5))
ax.set_ylabel('degrees')
secax = ax.secondary_yaxis('right', functions=(np.deg2rad,
np.rad2deg))
secax.set_ylabel('radians')
"""
if location in ['left', 'right'] or isinstance(location, Number):
secondary_ax = SecondaryAxis(self, 'y', location,
functions, **kwargs)
self.add_child_axes(secondary_ax)
return secondary_ax
else:
raise ValueError('secondary_yaxis location must be either '
'a float or "left"/"right"')
@docstring.dedent_interpd
def text(self, x, y, s, fontdict=None, **kwargs):
"""
Add text to the axes.
Add the text *s* to the axes at location *x*, *y* in data coordinates.
Parameters
----------
x, y : float
The position to place the text. By default, this is in data
coordinates. The coordinate system can be changed using the
*transform* parameter.
s : str
The text.
fontdict : dict, default: None
A dictionary to override the default text properties. If fontdict
is None, the defaults are determined by `.rcParams`.
Returns
-------
`.Text`
The created `.Text` instance.
Other Parameters
----------------
**kwargs : `~matplotlib.text.Text` properties.
Other miscellaneous text parameters.
%(Text)s
Examples
--------
Individual keyword arguments can be used to override any given
parameter::
>>> text(x, y, s, fontsize=12)
The default transform specifies that text is in data coords,
alternatively, you can specify text in axis coords ((0, 0) is
lower-left and (1, 1) is upper-right). The example below places
text in the center of the axes::
>>> text(0.5, 0.5, 'matplotlib', horizontalalignment='center',
... verticalalignment='center', transform=ax.transAxes)
You can put a rectangular box around the text instance (e.g., to
set a background color) by using the keyword *bbox*. *bbox* is
a dictionary of `~matplotlib.patches.Rectangle`
properties. For example::
>>> text(x, y, s, bbox=dict(facecolor='red', alpha=0.5))
"""
effective_kwargs = {
'verticalalignment': 'baseline',
'horizontalalignment': 'left',
'transform': self.transData,
'clip_on': False,
**(fontdict if fontdict is not None else {}),
**kwargs,
}
t = mtext.Text(x, y, text=s, **effective_kwargs)
t.set_clip_path(self.patch)
self._add_text(t)
return t
@cbook._rename_parameter("3.3", "s", "text")
@docstring.dedent_interpd
def annotate(self, text, xy, *args, **kwargs):
a = mtext.Annotation(text, xy, *args, **kwargs)
a.set_transform(mtransforms.IdentityTransform())
if 'clip_on' in kwargs:
a.set_clip_path(self.patch)
self._add_text(a)
return a
annotate.__doc__ = mtext.Annotation.__init__.__doc__
#### Lines and spans
@docstring.dedent_interpd
def axhline(self, y=0, xmin=0, xmax=1, **kwargs):
"""
Add a horizontal line across the axis.
Parameters
----------
y : float, default: 0
y position in data coordinates of the horizontal line.
xmin : float, default: 0
Should be between 0 and 1, 0 being the far left of the plot, 1 the
far right of the plot.
xmax : float, default: 1
Should be between 0 and 1, 0 being the far left of the plot, 1 the
far right of the plot.
Returns
-------
`~matplotlib.lines.Line2D`
Other Parameters
----------------
**kwargs
Valid keyword arguments are `.Line2D` properties, with the
exception of 'transform':
%(_Line2D_docstr)s
See Also
--------
hlines : Add horizontal lines in data coordinates.
axhspan : Add a horizontal span (rectangle) across the axis.
axline : Add a line with an arbitrary slope.
Examples
--------
* draw a thick red hline at 'y' = 0 that spans the xrange::
>>> axhline(linewidth=4, color='r')
* draw a default hline at 'y' = 1 that spans the xrange::
>>> axhline(y=1)
* draw a default hline at 'y' = .5 that spans the middle half of
the xrange::
>>> axhline(y=.5, xmin=0.25, xmax=0.75)
"""
if "transform" in kwargs:
raise ValueError(
"'transform' is not allowed as a kwarg;"
+ "axhline generates its own transform.")
ymin, ymax = self.get_ybound()
# We need to strip away the units for comparison with
# non-unitized bounds
self._process_unit_info(ydata=y, kwargs=kwargs)
yy = self.convert_yunits(y)
scaley = (yy < ymin) or (yy > ymax)
trans = self.get_yaxis_transform(which='grid')
l = mlines.Line2D([xmin, xmax], [y, y], transform=trans, **kwargs)
self.add_line(l)
self._request_autoscale_view(scalex=False, scaley=scaley)
return l
@docstring.dedent_interpd
def axvline(self, x=0, ymin=0, ymax=1, **kwargs):
"""
Add a vertical line across the axes.
Parameters
----------
x : float, default: 0
x position in data coordinates of the vertical line.
ymin : float, default: 0
Should be between 0 and 1, 0 being the bottom of the plot, 1 the
top of the plot.
ymax : float, default: 1
Should be between 0 and 1, 0 being the bottom of the plot, 1 the
top of the plot.
Returns
-------
`~matplotlib.lines.Line2D`
Other Parameters
----------------
**kwargs
Valid keyword arguments are `.Line2D` properties, with the
exception of 'transform':
%(_Line2D_docstr)s
See Also
--------
vlines : Add vertical lines in data coordinates.
axvspan : Add a vertical span (rectangle) across the axis.
axline : Add a line with an arbitrary slope.
Examples
--------
* draw a thick red vline at *x* = 0 that spans the yrange::
>>> axvline(linewidth=4, color='r')
* draw a default vline at *x* = 1 that spans the yrange::
>>> axvline(x=1)
* draw a default vline at *x* = .5 that spans the middle half of
the yrange::
>>> axvline(x=.5, ymin=0.25, ymax=0.75)
"""
if "transform" in kwargs:
raise ValueError(
"'transform' is not allowed as a kwarg;"
+ "axvline generates its own transform.")
xmin, xmax = self.get_xbound()
# We need to strip away the units for comparison with
# non-unitized bounds
self._process_unit_info(xdata=x, kwargs=kwargs)
xx = self.convert_xunits(x)
scalex = (xx < xmin) or (xx > xmax)
trans = self.get_xaxis_transform(which='grid')
l = mlines.Line2D([x, x], [ymin, ymax], transform=trans, **kwargs)
self.add_line(l)
self._request_autoscale_view(scalex=scalex, scaley=False)
return l
@docstring.dedent_interpd
def axline(self, xy1, xy2=None, *, slope=None, **kwargs):
"""
Add an infinitely long straight line.
The line can be defined either by two points *xy1* and *xy2*, or
by one point *xy1* and a *slope*.
This draws a straight line "on the screen", regardless of the x and y
scales, and is thus also suitable for drawing exponential decays in
semilog plots, power laws in loglog plots, etc. However, *slope*
should only be used with linear scales; It has no clear meaning for
all other scales, and thus the behavior is undefined. Please specify
the line using the points *xy1*, *xy2* for non-linear scales.
Parameters
----------
xy1, xy2 : (float, float)
Points for the line to pass through.
Either *xy2* or *slope* has to be given.
slope : float, optional
The slope of the line. Either *xy2* or *slope* has to be given.
Returns
-------
`.Line2D`
Other Parameters
----------------
**kwargs
Valid kwargs are `.Line2D` properties, with the exception of
'transform':
%(_Line2D_docstr)s
See Also
--------
axhline : for horizontal lines
axvline : for vertical lines
Examples
--------
Draw a thick red line passing through (0, 0) and (1, 1)::
>>> axline((0, 0), (1, 1), linewidth=4, color='r')
"""
def _to_points(xy1, xy2, slope):
"""
Check for a valid combination of input parameters and convert
to two points, if necessary.
"""
if (xy2 is None and slope is None or
xy2 is not None and slope is not None):
raise TypeError(
"Exactly one of 'xy2' and 'slope' must be given")
if xy2 is None:
x1, y1 = xy1
xy2 = (x1, y1 + 1) if np.isinf(slope) else (x1 + 1, y1 + slope)
return xy1, xy2
if "transform" in kwargs:
raise TypeError("'transform' is not allowed as a kwarg; "
"axline generates its own transform")
if slope is not None and (self.get_xscale() != 'linear' or
self.get_yscale() != 'linear'):
raise TypeError("'slope' cannot be used with non-linear scales")
datalim = [xy1] if xy2 is None else [xy1, xy2]
(x1, y1), (x2, y2) = _to_points(xy1, xy2, slope)
line = mlines._AxLine([x1, x2], [y1, y2], **kwargs)
# Like add_line, but correctly handling data limits.
self._set_artist_props(line)
if line.get_clip_path() is None:
line.set_clip_path(self.patch)
if not line.get_label():
line.set_label(f"_line{len(self.lines)}")
self.lines.append(line)
line._remove_method = self.lines.remove
self.update_datalim(datalim)
self._request_autoscale_view()
return line
@docstring.dedent_interpd
def axhspan(self, ymin, ymax, xmin=0, xmax=1, **kwargs):
"""
Add a horizontal span (rectangle) across the axis.
The rectangle spans from *ymin* to *ymax* vertically, and, by default,
the whole x-axis horizontally. The x-span can be set using *xmin*
(default: 0) and *xmax* (default: 1) which are in axis units; e.g.
``xmin = 0.5`` always refers to the middle of the x-axis regardless of
the limits set by `~.Axes.set_xlim`.
Parameters
----------
ymin : float
Lower y-coordinate of the span, in data units.
ymax : float
Upper y-coordinate of the span, in data units.
xmin : float, default: 0
Lower x-coordinate of the span, in x-axis (0-1) units.
xmax : float, default: 1
Upper x-coordinate of the span, in x-axis (0-1) units.
Returns
-------
`~matplotlib.patches.Polygon`
Horizontal span (rectangle) from (xmin, ymin) to (xmax, ymax).
Other Parameters
----------------
**kwargs : `~matplotlib.patches.Polygon` properties
%(Polygon)s
See Also
--------
axvspan : Add a vertical span across the axes.
"""
trans = self.get_yaxis_transform(which='grid')
# process the unit information
self._process_unit_info([xmin, xmax], [ymin, ymax], kwargs=kwargs)
# first we need to strip away the units
xmin, xmax = self.convert_xunits([xmin, xmax])
ymin, ymax = self.convert_yunits([ymin, ymax])
verts = (xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin)
p = mpatches.Polygon(verts, **kwargs)
p.set_transform(trans)
self.add_patch(p)
self._request_autoscale_view(scalex=False)
return p
def axvspan(self, xmin, xmax, ymin=0, ymax=1, **kwargs):
"""
Add a vertical span (rectangle) across the axes.
The rectangle spans from *xmin* to *xmax* horizontally, and, by
default, the whole y-axis vertically. The y-span can be set using
*ymin* (default: 0) and *ymax* (default: 1) which are in axis units;
e.g. ``ymin = 0.5`` always refers to the middle of the y-axis
regardless of the limits set by `~.Axes.set_ylim`.
Parameters
----------
xmin : float
Lower x-coordinate of the span, in data units.
xmax : float
Upper x-coordinate of the span, in data units.
ymin : float, default: 0
Lower y-coordinate of the span, in y-axis units (0-1).
ymax : float, default: 1
Upper y-coordinate of the span, in y-axis units (0-1).
Returns
-------
`~matplotlib.patches.Polygon`
Vertical span (rectangle) from (xmin, ymin) to (xmax, ymax).
Other Parameters
----------------
**kwargs : `~matplotlib.patches.Polygon` properties
%(Polygon)s
See Also
--------
axhspan : Add a horizontal span across the axes.
Examples
--------
Draw a vertical, green, translucent rectangle from x = 1.25 to
x = 1.55 that spans the yrange of the axes.
>>> axvspan(1.25, 1.55, facecolor='g', alpha=0.5)
"""
trans = self.get_xaxis_transform(which='grid')
# process the unit information
self._process_unit_info([xmin, xmax], [ymin, ymax], kwargs=kwargs)
# first we need to strip away the units
xmin, xmax = self.convert_xunits([xmin, xmax])
ymin, ymax = self.convert_yunits([ymin, ymax])
verts = [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin)]
p = mpatches.Polygon(verts, **kwargs)
p.set_transform(trans)
self.add_patch(p)
self._request_autoscale_view(scaley=False)
return p
@_preprocess_data(replace_names=["y", "xmin", "xmax", "colors"],
label_namer="y")
def hlines(self, y, xmin, xmax, colors=None, linestyles='solid',
label='', **kwargs):
"""
Plot horizontal lines at each *y* from *xmin* to *xmax*.
Parameters
----------
y : float or array-like
y-indexes where to plot the lines.
xmin, xmax : float or array-like
Respective beginning and end of each line. If scalars are
provided, all lines will have same length.
colors : list of colors, default: :rc:`lines.color`
linestyles : {'solid', 'dashed', 'dashdot', 'dotted'}, optional
label : str, default: ''
Returns
-------
`~matplotlib.collections.LineCollection`
Other Parameters
----------------
**kwargs : `~matplotlib.collections.LineCollection` properties.
See Also
--------
vlines : vertical lines
axhline: horizontal line across the axes
"""
# We do the conversion first since not all unitized data is uniform
# process the unit information
self._process_unit_info([xmin, xmax], y, kwargs=kwargs)
y = self.convert_yunits(y)
xmin = self.convert_xunits(xmin)
xmax = self.convert_xunits(xmax)
if not np.iterable(y):
y = [y]
if not np.iterable(xmin):
xmin = [xmin]
if not np.iterable(xmax):
xmax = [xmax]
# Create and combine masked_arrays from input
y, xmin, xmax = cbook._combine_masks(y, xmin, xmax)
y = np.ravel(y)
xmin = np.ravel(xmin)
xmax = np.ravel(xmax)
masked_verts = np.ma.empty((len(y), 2, 2))
masked_verts[:, 0, 0] = xmin
masked_verts[:, 0, 1] = y
masked_verts[:, 1, 0] = xmax
masked_verts[:, 1, 1] = y
lines = mcoll.LineCollection(masked_verts, colors=colors,
linestyles=linestyles, label=label)
self.add_collection(lines, autolim=False)
lines.update(kwargs)
if len(y) > 0:
minx = min(xmin.min(), xmax.min())
maxx = max(xmin.max(), xmax.max())
miny = y.min()
maxy = y.max()
corners = (minx, miny), (maxx, maxy)
self.update_datalim(corners)
self._request_autoscale_view()
return lines
@_preprocess_data(replace_names=["x", "ymin", "ymax", "colors"],
label_namer="x")
def vlines(self, x, ymin, ymax, colors=None, linestyles='solid',
label='', **kwargs):
"""
Plot vertical lines.
Plot vertical lines at each *x* from *ymin* to *ymax*.
Parameters
----------
x : float or array-like
x-indexes where to plot the lines.
ymin, ymax : float or array-like
Respective beginning and end of each line. If scalars are
provided, all lines will have same length.
colors : list of colors, default: :rc:`lines.color`
linestyles : {'solid', 'dashed', 'dashdot', 'dotted'}, optional
label : str, default: ''
Returns
-------
`~matplotlib.collections.LineCollection`
Other Parameters
----------------
**kwargs : `~matplotlib.collections.LineCollection` properties.
See Also
--------
hlines : horizontal lines
axvline: vertical line across the axes
"""
self._process_unit_info(xdata=x, ydata=[ymin, ymax], kwargs=kwargs)
# We do the conversion first since not all unitized data is uniform
x = self.convert_xunits(x)
ymin = self.convert_yunits(ymin)
ymax = self.convert_yunits(ymax)
if not np.iterable(x):
x = [x]
if not np.iterable(ymin):
ymin = [ymin]
if not np.iterable(ymax):
ymax = [ymax]
# Create and combine masked_arrays from input
x, ymin, ymax = cbook._combine_masks(x, ymin, ymax)
x = np.ravel(x)
ymin = np.ravel(ymin)
ymax = np.ravel(ymax)
masked_verts = np.ma.empty((len(x), 2, 2))
masked_verts[:, 0, 0] = x
masked_verts[:, 0, 1] = ymin
masked_verts[:, 1, 0] = x
masked_verts[:, 1, 1] = ymax
lines = mcoll.LineCollection(masked_verts, colors=colors,
linestyles=linestyles, label=label)
self.add_collection(lines, autolim=False)
lines.update(kwargs)
if len(x) > 0:
minx = x.min()
maxx = x.max()
miny = min(ymin.min(), ymax.min())
maxy = max(ymin.max(), ymax.max())
corners = (minx, miny), (maxx, maxy)
self.update_datalim(corners)
self._request_autoscale_view()
return lines
@_preprocess_data(replace_names=["positions", "lineoffsets",
"linelengths", "linewidths",
"colors", "linestyles"])
@docstring.dedent_interpd
def eventplot(self, positions, orientation='horizontal', lineoffsets=1,
linelengths=1, linewidths=None, colors=None,
linestyles='solid', **kwargs):
"""
Plot identical parallel lines at the given positions.
This type of plot is commonly used in neuroscience for representing
neural events, where it is usually called a spike raster, dot raster,
or raster plot.
However, it is useful in any situation where you wish to show the
timing or position of multiple sets of discrete events, such as the
arrival times of people to a business on each day of the month or the
date of hurricanes each year of the last century.
Parameters
----------
positions : array-like or list of array-like
A 1D array-like defines the positions of one sequence of events.
Multiple groups of events may be passed as a list of array-likes.
Each group can be styled independently by passing lists of values
to *lineoffsets*, *linelengths*, *linewidths*, *colors* and
*linestyles*.
Note that *positions* can be a 2D array, but in practice different
event groups usually have different counts so that one will use a
list of different-length arrays rather than a 2D array.
orientation : {'horizontal', 'vertical'}, default: 'horizontal'
The direction of the event sequence:
- 'horizontal': the events are arranged horizontally.
The indicator lines are vertical.
- 'vertical': the events are arranged vertically.
The indicator lines are horizontal.
lineoffsets : float or array-like, default: 1
The offset of the center of the lines from the origin, in the
direction orthogonal to *orientation*.
If *positions* is 2D, this can be a sequence with length matching
the length of *positions*.
linelengths : float or array-like, default: 1
The total height of the lines (i.e. the lines stretches from
``lineoffset - linelength/2`` to ``lineoffset + linelength/2``).
If *positions* is 2D, this can be a sequence with length matching
the length of *positions*.
linewidths : float or array-like, default: :rc:`lines.linewidth`
The line width(s) of the event lines, in points.
If *positions* is 2D, this can be a sequence with length matching
the length of *positions*.
colors : color or list of colors, default: :rc:`lines.color`
The color(s) of the event lines.
If *positions* is 2D, this can be a sequence with length matching
the length of *positions*.
linestyles : str or tuple or list of such values, default: 'solid'
Default is 'solid'. Valid strings are ['solid', 'dashed',
'dashdot', 'dotted', '-', '--', '-.', ':']. Dash tuples
should be of the form::
(offset, onoffseq),
where *onoffseq* is an even length tuple of on and off ink
in points.
If *positions* is 2D, this can be a sequence with length matching
the length of *positions*.
**kwargs
Other keyword arguments are line collection properties. See
`.LineCollection` for a list of the valid properties.
Returns
-------
list of `.EventCollection`
The `.EventCollection` that were added.
Notes
-----
For *linelengths*, *linewidths*, *colors*, and *linestyles*, if only
a single value is given, that value is applied to all lines. If an
array-like is given, it must have the same length as *positions*, and
each value will be applied to the corresponding row of the array.
Examples
--------
.. plot:: gallery/lines_bars_and_markers/eventplot_demo.py
"""
self._process_unit_info(xdata=positions,
ydata=[lineoffsets, linelengths],
kwargs=kwargs)
# We do the conversion first since not all unitized data is uniform
positions = self.convert_xunits(positions)
lineoffsets = self.convert_yunits(lineoffsets)
linelengths = self.convert_yunits(linelengths)
if not np.iterable(positions):
positions = [positions]
elif any(np.iterable(position) for position in positions):
positions = [np.asanyarray(position) for position in positions]
else:
positions = [np.asanyarray(positions)]
if len(positions) == 0:
return []
# prevent 'singular' keys from **kwargs dict from overriding the effect
# of 'plural' keyword arguments (e.g. 'color' overriding 'colors')
colors = cbook._local_over_kwdict(colors, kwargs, 'color')
linewidths = cbook._local_over_kwdict(linewidths, kwargs, 'linewidth')
linestyles = cbook._local_over_kwdict(linestyles, kwargs, 'linestyle')
if not np.iterable(lineoffsets):
lineoffsets = [lineoffsets]
if not np.iterable(linelengths):
linelengths = [linelengths]
if not np.iterable(linewidths):
linewidths = [linewidths]
if not np.iterable(colors):
colors = [colors]
if hasattr(linestyles, 'lower') or not np.iterable(linestyles):
linestyles = [linestyles]
lineoffsets = np.asarray(lineoffsets)
linelengths = np.asarray(linelengths)
linewidths = np.asarray(linewidths)
if len(lineoffsets) == 0:
lineoffsets = [None]
if len(linelengths) == 0:
linelengths = [None]
if len(linewidths) == 0:
lineoffsets = [None]
if len(linewidths) == 0:
lineoffsets = [None]
if len(colors) == 0:
colors = [None]
try:
# Early conversion of the colors into RGBA values to take care
# of cases like colors='0.5' or colors='C1'. (Issue #8193)
colors = mcolors.to_rgba_array(colors)
except ValueError:
# Will fail if any element of *colors* is None. But as long
# as len(colors) == 1 or len(positions), the rest of the
# code should process *colors* properly.
pass
if len(lineoffsets) == 1 and len(positions) != 1:
lineoffsets = np.tile(lineoffsets, len(positions))
lineoffsets[0] = 0
lineoffsets = np.cumsum(lineoffsets)
if len(linelengths) == 1:
linelengths = np.tile(linelengths, len(positions))
if len(linewidths) == 1:
linewidths = np.tile(linewidths, len(positions))
if len(colors) == 1:
colors = list(colors)
colors = colors * len(positions)
if len(linestyles) == 1:
linestyles = [linestyles] * len(positions)
if len(lineoffsets) != len(positions):
raise ValueError('lineoffsets and positions are unequal sized '
'sequences')
if len(linelengths) != len(positions):
raise ValueError('linelengths and positions are unequal sized '
'sequences')
if len(linewidths) != len(positions):
raise ValueError('linewidths and positions are unequal sized '
'sequences')
if len(colors) != len(positions):
raise ValueError('colors and positions are unequal sized '
'sequences')
if len(linestyles) != len(positions):
raise ValueError('linestyles and positions are unequal sized '
'sequences')
colls = []
for position, lineoffset, linelength, linewidth, color, linestyle in \
zip(positions, lineoffsets, linelengths, linewidths,
colors, linestyles):
coll = mcoll.EventCollection(position,
orientation=orientation,
lineoffset=lineoffset,
linelength=linelength,
linewidth=linewidth,
color=color,
linestyle=linestyle)
self.add_collection(coll, autolim=False)
coll.update(kwargs)
colls.append(coll)
if len(positions) > 0:
# try to get min/max
min_max = [(np.min(_p), np.max(_p)) for _p in positions
if len(_p) > 0]
# if we have any non-empty positions, try to autoscale
if len(min_max) > 0:
mins, maxes = zip(*min_max)
minpos = np.min(mins)
maxpos = np.max(maxes)
minline = (lineoffsets - linelengths).min()
maxline = (lineoffsets + linelengths).max()
if (orientation is not None and
orientation.lower() == "vertical"):
corners = (minline, minpos), (maxline, maxpos)
else: # "horizontal", None or "none" (see EventCollection)
corners = (minpos, minline), (maxpos, maxline)
self.update_datalim(corners)
self._request_autoscale_view()
return colls
#### Basic plotting
# Uses a custom implementation of data-kwarg handling in
# _process_plot_var_args.
@docstring.dedent_interpd
def plot(self, *args, scalex=True, scaley=True, data=None, **kwargs):
"""
Plot y versus x as lines and/or markers.
Call signatures::
plot([x], y, [fmt], *, data=None, **kwargs)
plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)
The coordinates of the points or line nodes are given by *x*, *y*.
The optional parameter *fmt* is a convenient way for defining basic
formatting like color, marker and linestyle. It's a shortcut string
notation described in the *Notes* section below.
>>> plot(x, y) # plot x and y using default line style and color
>>> plot(x, y, 'bo') # plot x and y using blue circle markers
>>> plot(y) # plot y using x as index array 0..N-1
>>> plot(y, 'r+') # ditto, but with red plusses
You can use `.Line2D` properties as keyword arguments for more
control on the appearance. Line properties and *fmt* can be mixed.
The following two calls yield identical results:
>>> plot(x, y, 'go--', linewidth=2, markersize=12)
>>> plot(x, y, color='green', marker='o', linestyle='dashed',
... linewidth=2, markersize=12)
When conflicting with *fmt*, keyword arguments take precedence.
**Plotting labelled data**
There's a convenient way for plotting objects with labelled data (i.e.
data that can be accessed by index ``obj['y']``). Instead of giving
the data in *x* and *y*, you can provide the object in the *data*
parameter and just give the labels for *x* and *y*::
>>> plot('xlabel', 'ylabel', data=obj)
All indexable objects are supported. This could e.g. be a `dict`, a
`pandas.DataFrame` or a structured numpy array.
**Plotting multiple sets of data**
There are various ways to plot multiple sets of data.
- The most straight forward way is just to call `plot` multiple times.
Example:
>>> plot(x1, y1, 'bo')
>>> plot(x2, y2, 'go')
- Alternatively, if your data is already a 2d array, you can pass it
directly to *x*, *y*. A separate data set will be drawn for every
column.
Example: an array ``a`` where the first column represents the *x*
values and the other columns are the *y* columns::
>>> plot(a[0], a[1:])
- The third way is to specify multiple sets of *[x]*, *y*, *[fmt]*
groups::
>>> plot(x1, y1, 'g^', x2, y2, 'g-')
In this case, any additional keyword argument applies to all
datasets. Also this syntax cannot be combined with the *data*
parameter.
By default, each line is assigned a different style specified by a
'style cycle'. The *fmt* and line property parameters are only
necessary if you want explicit deviations from these defaults.
Alternatively, you can also change the style cycle using
:rc:`axes.prop_cycle`.
Parameters
----------
x, y : array-like or scalar
The horizontal / vertical coordinates of the data points.
*x* values are optional and default to ``range(len(y))``.
Commonly, these parameters are 1D arrays.
They can also be scalars, or two-dimensional (in that case, the
columns represent separate data sets).
These arguments cannot be passed as keywords.
fmt : str, optional
A format string, e.g. 'ro' for red circles. See the *Notes*
section for a full description of the format strings.
Format strings are just an abbreviation for quickly setting
basic line properties. All of these and more can also be
controlled by keyword arguments.
This argument cannot be passed as keyword.
data : indexable object, optional
An object with labelled data. If given, provide the label names to
plot in *x* and *y*.
.. note::
Technically there's a slight ambiguity in calls where the
second label is a valid *fmt*. ``plot('n', 'o', data=obj)``
could be ``plt(x, y)`` or ``plt(y, fmt)``. In such cases,
the former interpretation is chosen, but a warning is issued.
You may suppress the warning by adding an empty format string
``plot('n', 'o', '', data=obj)``.
Returns
-------
list of `.Line2D`
A list of lines representing the plotted data.
Other Parameters
----------------
scalex, scaley : bool, default: True
These parameters determine if the view limits are adapted to the
data limits. The values are passed on to `autoscale_view`.
**kwargs : `.Line2D` properties, optional
*kwargs* are used to specify properties like a line label (for
auto legends), linewidth, antialiasing, marker face color.
Example::
>>> plot([1, 2, 3], [1, 2, 3], 'go-', label='line 1', linewidth=2)
>>> plot([1, 2, 3], [1, 4, 9], 'rs', label='line 2')
If you make multiple lines with one plot call, the kwargs
apply to all those lines.
Here is a list of available `.Line2D` properties:
%(_Line2D_docstr)s
See Also
--------
scatter : XY scatter plot with markers of varying size and/or color (
sometimes also called bubble chart).
Notes
-----
**Format Strings**
A format string consists of a part for color, marker and line::
fmt = '[marker][line][color]'
Each of them is optional. If not provided, the value from the style
cycle is used. Exception: If ``line`` is given, but no ``marker``,
the data will be a line without markers.
Other combinations such as ``[color][marker][line]`` are also
supported, but note that their parsing may be ambiguous.
**Markers**
============= ===============================
character description
============= ===============================
``'.'`` point marker
``','`` pixel marker
``'o'`` circle marker
``'v'`` triangle_down marker
``'^'`` triangle_up marker
``'<'`` triangle_left marker
``'>'`` triangle_right marker
``'1'`` tri_down marker
``'2'`` tri_up marker
``'3'`` tri_left marker
``'4'`` tri_right marker
``'s'`` square marker
``'p'`` pentagon marker
``'*'`` star marker
``'h'`` hexagon1 marker
``'H'`` hexagon2 marker
``'+'`` plus marker
``'x'`` x marker
``'D'`` diamond marker
``'d'`` thin_diamond marker
``'|'`` vline marker
``'_'`` hline marker
============= ===============================
**Line Styles**
============= ===============================
character description
============= ===============================
``'-'`` solid line style
``'--'`` dashed line style
``'-.'`` dash-dot line style
``':'`` dotted line style
============= ===============================
Example format strings::
'b' # blue markers with default shape
'or' # red circles
'-g' # green solid line
'--' # dashed line with default color
'^k:' # black triangle_up markers connected by a dotted line
**Colors**
The supported color abbreviations are the single letter codes
============= ===============================
character color
============= ===============================
``'b'`` blue
``'g'`` green
``'r'`` red
``'c'`` cyan
``'m'`` magenta
``'y'`` yellow
``'k'`` black
``'w'`` white
============= ===============================
and the ``'CN'`` colors that index into the default property cycle.
If the color is the only part of the format string, you can
additionally use any `matplotlib.colors` spec, e.g. full names
(``'green'``) or hex strings (``'#008000'``).
"""
kwargs = cbook.normalize_kwargs(kwargs, mlines.Line2D)
lines = [*self._get_lines(*args, data=data, **kwargs)]
for line in lines:
self.add_line(line)
self._request_autoscale_view(scalex=scalex, scaley=scaley)
return lines
@_preprocess_data(replace_names=["x", "y"], label_namer="y")
@docstring.dedent_interpd
def plot_date(self, x, y, fmt='o', tz=None, xdate=True, ydate=False,
**kwargs):
"""
Plot data that contains dates.
Similar to `.plot`, this plots *y* vs. *x* as lines or markers.
However, the axis labels are formatted as dates depending on *xdate*
and *ydate*.
Parameters
----------
x, y : array-like
The coordinates of the data points. If *xdate* or *ydate* is
*True*, the respective values *x* or *y* are interpreted as
:ref:`Matplotlib dates <date-format>`.
fmt : str, optional
The plot format string. For details, see the corresponding
parameter in `.plot`.
tz : timezone string or `datetime.tzinfo`, default: :rc:`timezone`
The time zone to use in labeling dates.
xdate : bool, default: True
If *True*, the *x*-axis will be interpreted as Matplotlib dates.
ydate : bool, default: False
If *True*, the *y*-axis will be interpreted as Matplotlib dates.
Returns
-------
lines
A list of `.Line2D` objects representing the plotted data.
Other Parameters
----------------
**kwargs
Keyword arguments control the `.Line2D` properties:
%(_Line2D_docstr)s
See Also
--------
matplotlib.dates : Helper functions on dates.
matplotlib.dates.date2num : Convert dates to num.
matplotlib.dates.num2date : Convert num to dates.
matplotlib.dates.drange : Create an equally spaced sequence of dates.
Notes
-----
If you are using custom date tickers and formatters, it may be
necessary to set the formatters/locators after the call to
`.plot_date`. `.plot_date` will set the default tick locator to
`.AutoDateLocator` (if the tick locator is not already set to a
`.DateLocator` instance) and the default tick formatter to
`.AutoDateFormatter` (if the tick formatter is not already set to a
`.DateFormatter` instance).
"""
if xdate:
self.xaxis_date(tz)
if ydate:
self.yaxis_date(tz)
return self.plot(x, y, fmt, **kwargs)
# @_preprocess_data() # let 'plot' do the unpacking..
@docstring.dedent_interpd
def loglog(self, *args, **kwargs):
"""
Make a plot with log scaling on both the x and y axis.
Call signatures::
loglog([x], y, [fmt], data=None, **kwargs)
loglog([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)
This is just a thin wrapper around `.plot` which additionally changes
both the x-axis and the y-axis to log scaling. All of the concepts and
parameters of plot can be used here as well.
The additional parameters *base*, *subs* and *nonpositive* control the
x/y-axis properties. They are just forwarded to `.Axes.set_xscale` and
`.Axes.set_yscale`. To use different properties on the x-axis and the
y-axis, use e.g.
``ax.set_xscale("log", base=10); ax.set_yscale("log", base=2)``.
Parameters
----------
base : float, default: 10
Base of the logarithm.
subs : sequence, optional
The location of the minor ticks. If *None*, reasonable locations
are automatically chosen depending on the number of decades in the
plot. See `.Axes.set_xscale`/`.Axes.set_yscale` for details.
nonpositive : {'mask', 'clip'}, default: 'mask'
Non-positive values can be masked as invalid, or clipped to a very
small positive number.
Returns
-------
lines
A list of `.Line2D` objects representing the plotted data.
Other Parameters
----------------
**kwargs
All parameters supported by `.plot`.
"""
dx = {k: v for k, v in kwargs.items()
if k in ['base', 'subs', 'nonpositive',
'basex', 'subsx', 'nonposx']}
self.set_xscale('log', **dx)
dy = {k: v for k, v in kwargs.items()
if k in ['base', 'subs', 'nonpositive',
'basey', 'subsy', 'nonposy']}
self.set_yscale('log', **dy)
return self.plot(
*args, **{k: v for k, v in kwargs.items() if k not in {*dx, *dy}})
# @_preprocess_data() # let 'plot' do the unpacking..
@docstring.dedent_interpd
def semilogx(self, *args, **kwargs):
"""
Make a plot with log scaling on the x axis.
Call signatures::
semilogx([x], y, [fmt], data=None, **kwargs)
semilogx([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)
This is just a thin wrapper around `.plot` which additionally changes
the x-axis to log scaling. All of the concepts and parameters of plot
can be used here as well.
The additional parameters *base*, *subs*, and *nonpositive* control the
x-axis properties. They are just forwarded to `.Axes.set_xscale`.
Parameters
----------
base : float, default: 10
Base of the x logarithm.
subs : array-like, optional
The location of the minor xticks. If *None*, reasonable locations
are automatically chosen depending on the number of decades in the
plot. See `.Axes.set_xscale` for details.
nonpositive : {'mask', 'clip'}, default: 'mask'
Non-positive values in x can be masked as invalid, or clipped to a
very small positive number.
Returns
-------
lines
A list of `.Line2D` objects representing the plotted data.
Other Parameters
----------------
**kwargs
All parameters supported by `.plot`.
"""
d = {k: v for k, v in kwargs.items()
if k in ['base', 'subs', 'nonpositive',
'basex', 'subsx', 'nonposx']}
self.set_xscale('log', **d)
return self.plot(
*args, **{k: v for k, v in kwargs.items() if k not in d})
# @_preprocess_data() # let 'plot' do the unpacking..
@docstring.dedent_interpd
def semilogy(self, *args, **kwargs):
"""
Make a plot with log scaling on the y axis.
Call signatures::
semilogy([x], y, [fmt], data=None, **kwargs)
semilogy([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)
This is just a thin wrapper around `.plot` which additionally changes
the y-axis to log scaling. All of the concepts and parameters of plot
can be used here as well.
The additional parameters *base*, *subs*, and *nonpositive* control the
y-axis properties. They are just forwarded to `.Axes.set_yscale`.
Parameters
----------
base : float, default: 10
Base of the y logarithm.
subs : array-like, optional
The location of the minor yticks. If *None*, reasonable locations
are automatically chosen depending on the number of decades in the
plot. See `.Axes.set_yscale` for details.
nonpositive : {'mask', 'clip'}, default: 'mask'
Non-positive values in y can be masked as invalid, or clipped to a
very small positive number.
Returns
-------
lines
A list of `.Line2D` objects representing the plotted data.
Other Parameters
----------------
**kwargs
All parameters supported by `.plot`.
"""
d = {k: v for k, v in kwargs.items()
if k in ['base', 'subs', 'nonpositive',
'basey', 'subsy', 'nonposy']}
self.set_yscale('log', **d)
return self.plot(
*args, **{k: v for k, v in kwargs.items() if k not in d})
@_preprocess_data(replace_names=["x"], label_namer="x")
def acorr(self, x, **kwargs):
"""
Plot the autocorrelation of *x*.
Parameters
----------
x : array-like
detrend : callable, default: `.mlab.detrend_none` (no detrending)
A detrending function applied to *x*. It must have the
signature ::
detrend(x: np.ndarray) -> np.ndarray
normed : bool, default: True
If ``True``, input vectors are normalised to unit length.
usevlines : bool, default: True
Determines the plot style.
If ``True``, vertical lines are plotted from 0 to the acorr value
using `.Axes.vlines`. Additionally, a horizontal line is plotted
at y=0 using `.Axes.axhline`.
If ``False``, markers are plotted at the acorr values using
`.Axes.plot`.
maxlags : int, default: 10
Number of lags to show. If ``None``, will return all
``2 * len(x) - 1`` lags.
Returns
-------
lags : array (length ``2*maxlags+1``)
The lag vector.
c : array (length ``2*maxlags+1``)
The auto correlation vector.
line : `.LineCollection` or `.Line2D`
`.Artist` added to the axes of the correlation:
- `.LineCollection` if *usevlines* is True.
- `.Line2D` if *usevlines* is False.
b : `.Line2D` or None
Horizontal line at 0 if *usevlines* is True
None *usevlines* is False.
Other Parameters
----------------
linestyle : `.Line2D` property, optional
The linestyle for plotting the data points.
Only used if *usevlines* is ``False``.
marker : str, default: 'o'
The marker for plotting the data points.
Only used if *usevlines* is ``False``.
**kwargs
Additional parameters are passed to `.Axes.vlines` and
`.Axes.axhline` if *usevlines* is ``True``; otherwise they are
passed to `.Axes.plot`.
Notes
-----
The cross correlation is performed with `numpy.correlate` with
``mode = "full"``.
"""
return self.xcorr(x, x, **kwargs)
@_preprocess_data(replace_names=["x", "y"], label_namer="y")
def xcorr(self, x, y, normed=True, detrend=mlab.detrend_none,
usevlines=True, maxlags=10, **kwargs):
r"""
Plot the cross correlation between *x* and *y*.
The correlation with lag k is defined as
:math:`\sum_n x[n+k] \cdot y^*[n]`, where :math:`y^*` is the complex
conjugate of :math:`y`.
Parameters
----------
x, y : array-like of length n
detrend : callable, default: `.mlab.detrend_none` (no detrending)
A detrending function applied to *x* and *y*. It must have the
signature ::
detrend(x: np.ndarray) -> np.ndarray
normed : bool, default: True
If ``True``, input vectors are normalised to unit length.
usevlines : bool, default: True
Determines the plot style.
If ``True``, vertical lines are plotted from 0 to the xcorr value
using `.Axes.vlines`. Additionally, a horizontal line is plotted
at y=0 using `.Axes.axhline`.
If ``False``, markers are plotted at the xcorr values using
`.Axes.plot`.
maxlags : int, default: 10
Number of lags to show. If None, will return all ``2 * len(x) - 1``
lags.
Returns
-------
lags : array (length ``2*maxlags+1``)
The lag vector.
c : array (length ``2*maxlags+1``)
The auto correlation vector.
line : `.LineCollection` or `.Line2D`
`.Artist` added to the axes of the correlation:
- `.LineCollection` if *usevlines* is True.
- `.Line2D` if *usevlines* is False.
b : `.Line2D` or None
Horizontal line at 0 if *usevlines* is True
None *usevlines* is False.
Other Parameters
----------------
linestyle : `.Line2D` property, optional
The linestyle for plotting the data points.
Only used if *usevlines* is ``False``.
marker : str, default: 'o'
The marker for plotting the data points.
Only used if *usevlines* is ``False``.
**kwargs
Additional parameters are passed to `.Axes.vlines` and
`.Axes.axhline` if *usevlines* is ``True``; otherwise they are
passed to `.Axes.plot`.
Notes
-----
The cross correlation is performed with `numpy.correlate` with
``mode = "full"``.
"""
Nx = len(x)
if Nx != len(y):
raise ValueError('x and y must be equal length')
x = detrend(np.asarray(x))
y = detrend(np.asarray(y))
correls = np.correlate(x, y, mode="full")
if normed:
correls /= np.sqrt(np.dot(x, x) * np.dot(y, y))
if maxlags is None:
maxlags = Nx - 1
if maxlags >= Nx or maxlags < 1:
raise ValueError('maxlags must be None or strictly '
'positive < %d' % Nx)
lags = np.arange(-maxlags, maxlags + 1)
correls = correls[Nx - 1 - maxlags:Nx + maxlags]
if usevlines:
a = self.vlines(lags, [0], correls, **kwargs)
# Make label empty so only vertical lines get a legend entry
kwargs.pop('label', '')
b = self.axhline(**kwargs)
else:
kwargs.setdefault('marker', 'o')
kwargs.setdefault('linestyle', 'None')
a, = self.plot(lags, correls, **kwargs)
b = None
return lags, correls, a, b
#### Specialized plotting
# @_preprocess_data() # let 'plot' do the unpacking..
def step(self, x, y, *args, where='pre', data=None, **kwargs):
"""
Make a step plot.
Call signatures::
step(x, y, [fmt], *, data=None, where='pre', **kwargs)
step(x, y, [fmt], x2, y2, [fmt2], ..., *, where='pre', **kwargs)
This is just a thin wrapper around `.plot` which changes some
formatting options. Most of the concepts and parameters of plot can be
used here as well.
Parameters
----------
x : array-like
1-D sequence of x positions. It is assumed, but not checked, that
it is uniformly increasing.
y : array-like
1-D sequence of y levels.
fmt : str, optional
A format string, e.g. 'g' for a green line. See `.plot` for a more
detailed description.
Note: While full format strings are accepted, it is recommended to
only specify the color. Line styles are currently ignored (use
the keyword argument *linestyle* instead). Markers are accepted
and plotted on the given positions, however, this is a rarely
needed feature for step plots.
data : indexable object, optional
An object with labelled data. If given, provide the label names to
plot in *x* and *y*.
where : {'pre', 'post', 'mid'}, default: 'pre'
Define where the steps should be placed:
- 'pre': The y value is continued constantly to the left from
every *x* position, i.e. the interval ``(x[i-1], x[i]]`` has the
value ``y[i]``.
- 'post': The y value is continued constantly to the right from
every *x* position, i.e. the interval ``[x[i], x[i+1])`` has the
value ``y[i]``.
- 'mid': Steps occur half-way between the *x* positions.
Returns
-------
lines
A list of `.Line2D` objects representing the plotted data.
Other Parameters
----------------
**kwargs
Additional parameters are the same as those for `.plot`.
Notes
-----
.. [notes section required to get data note injection right]
"""
cbook._check_in_list(('pre', 'post', 'mid'), where=where)
kwargs['drawstyle'] = 'steps-' + where
return self.plot(x, y, *args, data=data, **kwargs)
@staticmethod
def _convert_dx(dx, x0, xconv, convert):
"""
Small helper to do logic of width conversion flexibly.
*dx* and *x0* have units, but *xconv* has already been converted
to unitless (and is an ndarray). This allows the *dx* to have units
that are different from *x0*, but are still accepted by the
``__add__`` operator of *x0*.
"""
# x should be an array...
assert type(xconv) is np.ndarray
if xconv.size == 0:
# xconv has already been converted, but maybe empty...
return convert(dx)
try:
# attempt to add the width to x0; this works for
# datetime+timedelta, for instance
# only use the first element of x and x0. This saves
# having to be sure addition works across the whole
# vector. This is particularly an issue if
# x0 and dx are lists so x0 + dx just concatenates the lists.
# We can't just cast x0 and dx to numpy arrays because that
# removes the units from unit packages like `pint` that
# wrap numpy arrays.
try:
x0 = cbook.safe_first_element(x0)
except (TypeError, IndexError, KeyError):
x0 = x0
try:
x = cbook.safe_first_element(xconv)
except (TypeError, IndexError, KeyError):
x = xconv
delist = False
if not np.iterable(dx):
dx = [dx]
delist = True
dx = [convert(x0 + ddx) - x for ddx in dx]
if delist:
dx = dx[0]
except (ValueError, TypeError, AttributeError):
# if the above fails (for any reason) just fallback to what
# we do by default and convert dx by itself.
dx = convert(dx)
return dx
@_preprocess_data()
@docstring.dedent_interpd
def bar(self, x, height, width=0.8, bottom=None, *, align="center",
**kwargs):
r"""
Make a bar plot.
The bars are positioned at *x* with the given *align*\ment. Their
dimensions are given by *height* and *width*. The vertical baseline
is *bottom* (default 0).
Many parameters can take either a single value applying to all bars
or a sequence of values, one for each bar.
Parameters
----------
x : float or array-like
The x coordinates of the bars. See also *align* for the
alignment of the bars to the coordinates.
height : float or array-like
The height(s) of the bars.
width : float or array-like, default: 0.8
The width(s) of the bars.
bottom : float or array-like, default: 0
The y coordinate(s) of the bars bases.
align : {'center', 'edge'}, default: 'center'
Alignment of the bars to the *x* coordinates:
- 'center': Center the base on the *x* positions.
- 'edge': Align the left edges of the bars with the *x* positions.
To align the bars on the right edge pass a negative *width* and
``align='edge'``.
Returns
-------
`.BarContainer`
Container with all the bars and optionally errorbars.
Other Parameters
----------------
color : color or list of color, optional
The colors of the bar faces.
edgecolor : color or list of color, optional
The colors of the bar edges.
linewidth : float or array-like, optional
Width of the bar edge(s). If 0, don't draw edges.
tick_label : str or list of str, optional
The tick labels of the bars.
Default: None (Use default numeric labels.)
xerr, yerr : float or array-like of shape(N,) or shape(2, N), optional
If not *None*, add horizontal / vertical errorbars to the bar tips.
The values are +/- sizes relative to the data:
- scalar: symmetric +/- values for all bars
- shape(N,): symmetric +/- values for each bar
- shape(2, N): Separate - and + values for each bar. First row
contains the lower errors, the second row contains the upper
errors.
- *None*: No errorbar. (Default)
See :doc:`/gallery/statistics/errorbar_features`
for an example on the usage of ``xerr`` and ``yerr``.
ecolor : color or list of color, default: 'black'
The line color of the errorbars.
capsize : float, default: :rc:`errorbar.capsize`
The length of the error bar caps in points.
error_kw : dict, optional
Dictionary of kwargs to be passed to the `~.Axes.errorbar`
method. Values of *ecolor* or *capsize* defined here take
precedence over the independent kwargs.
log : bool, default: False
If *True*, set the y-axis to be log scale.
**kwargs : `.Rectangle` properties
%(Rectangle)s
See Also
--------
barh: Plot a horizontal bar plot.
Notes
-----
Stacked bars can be achieved by passing individual *bottom* values per
bar. See :doc:`/gallery/lines_bars_and_markers/bar_stacked`.
"""
kwargs = cbook.normalize_kwargs(kwargs, mpatches.Patch)
color = kwargs.pop('color', None)
if color is None:
color = self._get_patches_for_fill.get_next_color()
edgecolor = kwargs.pop('edgecolor', None)
linewidth = kwargs.pop('linewidth', None)
# Because xerr and yerr will be passed to errorbar, most dimension
# checking and processing will be left to the errorbar method.
xerr = kwargs.pop('xerr', None)
yerr = kwargs.pop('yerr', None)
error_kw = kwargs.pop('error_kw', {})
ezorder = error_kw.pop('zorder', None)
if ezorder is None:
ezorder = kwargs.get('zorder', None)
if ezorder is not None:
# If using the bar zorder, increment slightly to make sure
# errorbars are drawn on top of bars
ezorder += 0.01
error_kw.setdefault('zorder', ezorder)
ecolor = kwargs.pop('ecolor', 'k')
capsize = kwargs.pop('capsize', rcParams["errorbar.capsize"])
error_kw.setdefault('ecolor', ecolor)
error_kw.setdefault('capsize', capsize)
# The keyword argument *orientation* is used by barh() to defer all
# logic and drawing to bar(). It is considered internal and is
# intentionally not mentioned in the docstring.
orientation = kwargs.pop('orientation', 'vertical')
cbook._check_in_list(['vertical', 'horizontal'],
orientation=orientation)
log = kwargs.pop('log', False)
label = kwargs.pop('label', '')
tick_labels = kwargs.pop('tick_label', None)
y = bottom # Matches barh call signature.
if orientation == 'vertical':
if y is None:
y = 0
elif orientation == 'horizontal':
if x is None:
x = 0
if orientation == 'vertical':
self._process_unit_info(xdata=x, ydata=height, kwargs=kwargs)
if log:
self.set_yscale('log', nonpositive='clip')
elif orientation == 'horizontal':
self._process_unit_info(xdata=width, ydata=y, kwargs=kwargs)
if log:
self.set_xscale('log', nonpositive='clip')
# lets do some conversions now since some types cannot be
# subtracted uniformly
if self.xaxis is not None:
x0 = x
x = np.asarray(self.convert_xunits(x))
width = self._convert_dx(width, x0, x, self.convert_xunits)
if xerr is not None:
xerr = self._convert_dx(xerr, x0, x, self.convert_xunits)
if self.yaxis is not None:
y0 = y
y = np.asarray(self.convert_yunits(y))
height = self._convert_dx(height, y0, y, self.convert_yunits)
if yerr is not None:
yerr = self._convert_dx(yerr, y0, y, self.convert_yunits)
x, height, width, y, linewidth = np.broadcast_arrays(
# Make args iterable too.
np.atleast_1d(x), height, width, y, linewidth)
# Now that units have been converted, set the tick locations.
if orientation == 'vertical':
tick_label_axis = self.xaxis
tick_label_position = x
elif orientation == 'horizontal':
tick_label_axis = self.yaxis
tick_label_position = y
linewidth = itertools.cycle(np.atleast_1d(linewidth))
color = itertools.chain(itertools.cycle(mcolors.to_rgba_array(color)),
# Fallback if color == "none".
itertools.repeat('none'))
if edgecolor is None:
edgecolor = itertools.repeat(None)
else:
edgecolor = itertools.chain(
itertools.cycle(mcolors.to_rgba_array(edgecolor)),
# Fallback if edgecolor == "none".
itertools.repeat('none'))
# We will now resolve the alignment and really have
# left, bottom, width, height vectors
cbook._check_in_list(['center', 'edge'], align=align)
if align == 'center':
if orientation == 'vertical':
try:
left = x - width / 2
except TypeError as e:
raise TypeError(f'the dtypes of parameters x ({x.dtype}) '
f'and width ({width.dtype}) '
f'are incompatible') from e
bottom = y
elif orientation == 'horizontal':
try:
bottom = y - height / 2
except TypeError as e:
raise TypeError(f'the dtypes of parameters y ({y.dtype}) '
f'and height ({height.dtype}) '
f'are incompatible') from e
left = x
elif align == 'edge':
left = x
bottom = y
patches = []
args = zip(left, bottom, width, height, color, edgecolor, linewidth)
for l, b, w, h, c, e, lw in args:
r = mpatches.Rectangle(
xy=(l, b), width=w, height=h,
facecolor=c,
edgecolor=e,
linewidth=lw,
label='_nolegend_',
)
r.update(kwargs)
r.get_path()._interpolation_steps = 100
if orientation == 'vertical':
r.sticky_edges.y.append(b)
elif orientation == 'horizontal':
r.sticky_edges.x.append(l)
self.add_patch(r)
patches.append(r)
if xerr is not None or yerr is not None:
if orientation == 'vertical':
# using list comps rather than arrays to preserve unit info
ex = [l + 0.5 * w for l, w in zip(left, width)]
ey = [b + h for b, h in zip(bottom, height)]
elif orientation == 'horizontal':
# using list comps rather than arrays to preserve unit info
ex = [l + w for l, w in zip(left, width)]
ey = [b + 0.5 * h for b, h in zip(bottom, height)]
error_kw.setdefault("label", '_nolegend_')
errorbar = self.errorbar(ex, ey,
yerr=yerr, xerr=xerr,
fmt='none', **error_kw)
else:
errorbar = None
self._request_autoscale_view()
bar_container = BarContainer(patches, errorbar, label=label)
self.add_container(bar_container)
if tick_labels is not None:
tick_labels = np.broadcast_to(tick_labels, len(patches))
tick_label_axis.set_ticks(tick_label_position)
tick_label_axis.set_ticklabels(tick_labels)
return bar_container
@docstring.dedent_interpd
def barh(self, y, width, height=0.8, left=None, *, align="center",
**kwargs):
r"""
Make a horizontal bar plot.
The bars are positioned at *y* with the given *align*\ment. Their
dimensions are given by *width* and *height*. The horizontal baseline
is *left* (default 0).
Many parameters can take either a single value applying to all bars
or a sequence of values, one for each bar.
Parameters
----------
y : float or array-like
The y coordinates of the bars. See also *align* for the
alignment of the bars to the coordinates.
width : float or array-like
The width(s) of the bars.
height : float or array-like, default: 0.8
The heights of the bars.
left : float or array-like, default: 0
The x coordinates of the left sides of the bars.
align : {'center', 'edge'}, default: 'center'
Alignment of the base to the *y* coordinates*:
- 'center': Center the bars on the *y* positions.
- 'edge': Align the bottom edges of the bars with the *y*
positions.
To align the bars on the top edge pass a negative *height* and
``align='edge'``.
Returns
-------
`.BarContainer`
Container with all the bars and optionally errorbars.
Other Parameters
----------------
color : color or list of color, optional
The colors of the bar faces.
edgecolor : color or list of color, optional
The colors of the bar edges.
linewidth : float or array-like, optional
Width of the bar edge(s). If 0, don't draw edges.
tick_label : str or list of str, optional
The tick labels of the bars.
Default: None (Use default numeric labels.)
xerr, yerr : float or array-like of shape(N,) or shape(2, N), optional
If not ``None``, add horizontal / vertical errorbars to the
bar tips. The values are +/- sizes relative to the data:
- scalar: symmetric +/- values for all bars
- shape(N,): symmetric +/- values for each bar
- shape(2, N): Separate - and + values for each bar. First row
contains the lower errors, the second row contains the upper
errors.
- *None*: No errorbar. (default)
See :doc:`/gallery/statistics/errorbar_features`
for an example on the usage of ``xerr`` and ``yerr``.
ecolor : color or list of color, default: 'black'
The line color of the errorbars.
capsize : float, default: :rc:`errorbar.capsize`
The length of the error bar caps in points.
error_kw : dict, optional
Dictionary of kwargs to be passed to the `~.Axes.errorbar`
method. Values of *ecolor* or *capsize* defined here take
precedence over the independent kwargs.
log : bool, default: False
If ``True``, set the x-axis to be log scale.
**kwargs : `.Rectangle` properties
%(Rectangle)s
See Also
--------
bar: Plot a vertical bar plot.
Notes
-----
Stacked bars can be achieved by passing individual *left* values per
bar. See
:doc:`/gallery/lines_bars_and_markers/horizontal_barchart_distribution`
.
"""
kwargs.setdefault('orientation', 'horizontal')
patches = self.bar(x=left, height=height, width=width, bottom=y,
align=align, **kwargs)
return patches
@_preprocess_data()
@docstring.dedent_interpd
def broken_barh(self, xranges, yrange, **kwargs):
"""
Plot a horizontal sequence of rectangles.
A rectangle is drawn for each element of *xranges*. All rectangles
have the same vertical position and size defined by *yrange*.
This is a convenience function for instantiating a
`.BrokenBarHCollection`, adding it to the axes and autoscaling the
view.
Parameters
----------
xranges : sequence of tuples (*xmin*, *xwidth*)
The x-positions and extends of the rectangles. For each tuple
(*xmin*, *xwidth*) a rectangle is drawn from *xmin* to *xmin* +
*xwidth*.
yrange : (*ymin*, *yheight*)
The y-position and extend for all the rectangles.
Returns
-------
`~.collections.BrokenBarHCollection`
Other Parameters
----------------
**kwargs : `.BrokenBarHCollection` properties
Each *kwarg* can be either a single argument applying to all
rectangles, e.g.::
facecolors='black'
or a sequence of arguments over which is cycled, e.g.::
facecolors=('black', 'blue')
would create interleaving black and blue rectangles.
Supported keywords:
%(BrokenBarHCollection)s
"""
# process the unit information
if len(xranges):
xdata = cbook.safe_first_element(xranges)
else:
xdata = None
if len(yrange):
ydata = cbook.safe_first_element(yrange)
else:
ydata = None
self._process_unit_info(xdata=xdata,
ydata=ydata,
kwargs=kwargs)
xranges_conv = []
for xr in xranges:
if len(xr) != 2:
raise ValueError('each range in xrange must be a sequence '
'with two elements (i.e. an Nx2 array)')
# convert the absolute values, not the x and dx...
x_conv = np.asarray(self.convert_xunits(xr[0]))
x1 = self._convert_dx(xr[1], xr[0], x_conv, self.convert_xunits)
xranges_conv.append((x_conv, x1))
yrange_conv = self.convert_yunits(yrange)
col = mcoll.BrokenBarHCollection(xranges_conv, yrange_conv, **kwargs)
self.add_collection(col, autolim=True)
self._request_autoscale_view()
return col
@_preprocess_data()
def stem(self, *args, linefmt=None, markerfmt=None, basefmt=None, bottom=0,
label=None, use_line_collection=True):
"""
Create a stem plot.
A stem plot plots vertical lines at each *x* location from the baseline
to *y*, and places a marker there.
Call signature::
stem([x,] y, linefmt=None, markerfmt=None, basefmt=None)
The x-positions are optional. The formats may be provided either as
positional or as keyword-arguments.
Parameters
----------
x : array-like, optional
The x-positions of the stems. Default: (0, 1, ..., len(y) - 1).
y : array-like
The y-values of the stem heads.
linefmt : str, optional
A string defining the properties of the vertical lines. Usually,
this will be a color or a color and a linestyle:
========= =============
Character Line Style
========= =============
``'-'`` solid line
``'--'`` dashed line
``'-.'`` dash-dot line
``':'`` dotted line
========= =============
Default: 'C0-', i.e. solid line with the first color of the color
cycle.
Note: While it is technically possible to specify valid formats
other than color or color and linestyle (e.g. 'rx' or '-.'), this
is beyond the intention of the method and will most likely not
result in a reasonable plot.
markerfmt : str, optional
A string defining the properties of the markers at the stem heads.
Default: 'C0o', i.e. filled circles with the first color of the
color cycle.
basefmt : str, default: 'C3-' ('C2-' in classic mode)
A format string defining the properties of the baseline.
bottom : float, default: 0
The y-position of the baseline.
label : str, default: None
The label to use for the stems in legends.
use_line_collection : bool, default: True
If ``True``, store and plot the stem lines as a
`~.collections.LineCollection` instead of individual lines, which
significantly increases performance. If ``False``, defaults to the
old behavior of using a list of `.Line2D` objects. This parameter
may be deprecated in the future.
Returns
-------
`.StemContainer`
The container may be treated like a tuple
(*markerline*, *stemlines*, *baseline*)
Notes
-----
.. seealso::
The MATLAB function
`stem <https://www.mathworks.com/help/matlab/ref/stem.html>`_
which inspired this method.
"""
if not 1 <= len(args) <= 5:
raise TypeError('stem expected between 1 and 5 positional '
'arguments, got {}'.format(args))
if len(args) == 1:
y, = args
x = np.arange(len(y))
args = ()
else:
x, y, *args = args
self._process_unit_info(xdata=x, ydata=y)
x = self.convert_xunits(x)
y = self.convert_yunits(y)
# defaults for formats
if linefmt is None:
try:
# fallback to positional argument
linefmt = args[0]
except IndexError:
linecolor = 'C0'
linemarker = 'None'
linestyle = '-'
else:
linestyle, linemarker, linecolor = \
_process_plot_format(linefmt)
else:
linestyle, linemarker, linecolor = _process_plot_format(linefmt)
if markerfmt is None:
try:
# fallback to positional argument
markerfmt = args[1]
except IndexError:
markercolor = 'C0'
markermarker = 'o'
markerstyle = 'None'
else:
markerstyle, markermarker, markercolor = \
_process_plot_format(markerfmt)
else:
markerstyle, markermarker, markercolor = \
_process_plot_format(markerfmt)
if basefmt is None:
try:
# fallback to positional argument
basefmt = args[2]
except IndexError:
if rcParams['_internal.classic_mode']:
basecolor = 'C2'
else:
basecolor = 'C3'
basemarker = 'None'
basestyle = '-'
else:
basestyle, basemarker, basecolor = \
_process_plot_format(basefmt)
else:
basestyle, basemarker, basecolor = _process_plot_format(basefmt)
# New behaviour in 3.1 is to use a LineCollection for the stemlines
if use_line_collection:
stemlines = [((xi, bottom), (xi, yi)) for xi, yi in zip(x, y)]
if linestyle is None:
linestyle = rcParams['lines.linestyle']
stemlines = mcoll.LineCollection(stemlines, linestyles=linestyle,
colors=linecolor,
label='_nolegend_')
self.add_collection(stemlines)
# Old behaviour is to plot each of the lines individually
else:
stemlines = []
for xi, yi in zip(x, y):
l, = self.plot([xi, xi], [bottom, yi],
color=linecolor, linestyle=linestyle,
marker=linemarker, label="_nolegend_")
stemlines.append(l)
markerline, = self.plot(x, y, color=markercolor, linestyle=markerstyle,
marker=markermarker, label="_nolegend_")
baseline, = self.plot([np.min(x), np.max(x)], [bottom, bottom],
color=basecolor, linestyle=basestyle,
marker=basemarker, label="_nolegend_")
stem_container = StemContainer((markerline, stemlines, baseline),
label=label)
self.add_container(stem_container)
return stem_container
@_preprocess_data(replace_names=["x", "explode", "labels", "colors"])
def pie(self, x, explode=None, labels=None, colors=None,
autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1,
startangle=0, radius=1, counterclock=True,
wedgeprops=None, textprops=None, center=(0, 0),
frame=False, rotatelabels=False, *, normalize=None):
"""
Plot a pie chart.
Make a pie chart of array *x*. The fractional area of each wedge is
given by ``x/sum(x)``. If ``sum(x) < 1``, then the values of *x* give
the fractional area directly and the array will not be normalized. The
resulting pie will have an empty wedge of size ``1 - sum(x)``.
The wedges are plotted counterclockwise, by default starting from the
x-axis.
Parameters
----------
x : 1D array-like
The wedge sizes.
explode : array-like, default: None
If not *None*, is a ``len(x)`` array which specifies the fraction
of the radius with which to offset each wedge.
labels : list, default: None
A sequence of strings providing the labels for each wedge
colors : array-like, default: None
A sequence of colors through which the pie chart will cycle. If
*None*, will use the colors in the currently active cycle.
autopct : None or str or callable, default: None
If not *None*, is a string or function used to label the wedges
with their numeric value. The label will be placed inside the
wedge. If it is a format string, the label will be ``fmt % pct``.
If it is a function, it will be called.
pctdistance : float, default: 0.6
The ratio between the center of each pie slice and the start of
the text generated by *autopct*. Ignored if *autopct* is *None*.
shadow : bool, default: False
Draw a shadow beneath the pie.
normalize: None or bool, default: None
When *True*, always make a full pie by normalizing x so that
``sum(x) == 1``. *False* makes a partial pie if ``sum(x) <= 1``
and raises a `ValueError` for ``sum(x) > 1``.
When *None*, defaults to *True* if ``sum(x) >= 1`` and *False* if
``sum(x) < 1``.
Please note that the previous default value of *None* is now
deprecated, and the default will change to *True* in the next
release. Please pass ``normalize=False`` explicitly if you want to
draw a partial pie.
labeldistance : float or None, default: 1.1
The radial distance at which the pie labels are drawn.
If set to ``None``, label are not drawn, but are stored for use in
``legend()``
startangle : float, default: 0 degrees
The angle by which the start of the pie is rotated,
counterclockwise from the x-axis.
radius : float, default: 1
The radius of the pie.
counterclock : bool, default: True
Specify fractions direction, clockwise or counterclockwise.
wedgeprops : dict, default: None
Dict of arguments passed to the wedge objects making the pie.
For example, you can pass in ``wedgeprops = {'linewidth': 3}``
to set the width of the wedge border lines equal to 3.
For more details, look at the doc/arguments of the wedge object.
By default ``clip_on=False``.
textprops : dict, default: None
Dict of arguments to pass to the text objects.
center : (float, float), default: (0, 0)
The coordinates of the center of the chart.
frame : bool, default: False
Plot axes frame with the chart if true.
rotatelabels : bool, default: False
Rotate each label to the angle of the corresponding slice if true.
Returns
-------
patches : list
A sequence of `matplotlib.patches.Wedge` instances
texts : list
A list of the label `.Text` instances.
autotexts : list
A list of `.Text` instances for the numeric labels. This will only
be returned if the parameter *autopct* is not *None*.
Notes
-----
The pie chart will probably look best if the figure and axes are
square, or the Axes aspect is equal.
This method sets the aspect ratio of the axis to "equal".
The axes aspect ratio can be controlled with `.Axes.set_aspect`.
"""
self.set_aspect('equal')
# The use of float32 is "historical", but can't be changed without
# regenerating the test baselines.
x = np.asarray(x, np.float32)
if x.ndim > 1:
raise ValueError("x must be 1D")
if np.any(x < 0):
raise ValueError("Wedge sizes 'x' must be non negative values")
sx = x.sum()
if normalize is None:
if sx < 1:
cbook.warn_deprecated(
"3.3", message="normalize=None does not normalize "
"if the sum is less than 1 but this behavior "
"is deprecated since %(since)s until %(removal)s. "
"After the deprecation "
"period the default value will be normalize=True. "
"To prevent normalization pass normalize=False ")
else:
normalize = True
if normalize:
x = x / sx
elif sx > 1:
raise ValueError('Cannot plot an unnormalized pie with sum(x) > 1')
if labels is None:
labels = [''] * len(x)
if explode is None:
explode = [0] * len(x)
if len(x) != len(labels):
raise ValueError("'label' must be of length 'x'")
if len(x) != len(explode):
raise ValueError("'explode' must be of length 'x'")
if colors is None:
get_next_color = self._get_patches_for_fill.get_next_color
else:
color_cycle = itertools.cycle(colors)
def get_next_color():
return next(color_cycle)
if radius is None:
cbook.warn_deprecated(
"3.3", message="Support for passing a radius of None to mean "
"1 is deprecated since %(since)s and will be removed "
"%(removal)s.")
radius = 1
# Starting theta1 is the start fraction of the circle
if startangle is None:
cbook.warn_deprecated(
"3.3", message="Support for passing a startangle of None to "
"mean 0 is deprecated since %(since)s and will be removed "
"%(removal)s.")
startangle = 0
theta1 = startangle / 360
if wedgeprops is None:
wedgeprops = {}
if textprops is None:
textprops = {}
texts = []
slices = []
autotexts = []
for frac, label, expl in zip(x, labels, explode):
x, y = center
theta2 = (theta1 + frac) if counterclock else (theta1 - frac)
thetam = 2 * np.pi * 0.5 * (theta1 + theta2)
x += expl * math.cos(thetam)
y += expl * math.sin(thetam)
w = mpatches.Wedge((x, y), radius, 360. * min(theta1, theta2),
360. * max(theta1, theta2),
facecolor=get_next_color(),
clip_on=False,
label=label)
w.set(**wedgeprops)
slices.append(w)
self.add_patch(w)
if shadow:
# Make sure to add a shadow after the call to add_patch so the
# figure and transform props will be set.
shad = mpatches.Shadow(w, -0.02, -0.02, label='_nolegend_')
self.add_patch(shad)
if labeldistance is not None:
xt = x + labeldistance * radius * math.cos(thetam)
yt = y + labeldistance * radius * math.sin(thetam)
label_alignment_h = 'left' if xt > 0 else 'right'
label_alignment_v = 'center'
label_rotation = 'horizontal'
if rotatelabels:
label_alignment_v = 'bottom' if yt > 0 else 'top'
label_rotation = (np.rad2deg(thetam)
+ (0 if xt > 0 else 180))
t = self.text(xt, yt, label,
clip_on=False,
horizontalalignment=label_alignment_h,
verticalalignment=label_alignment_v,
rotation=label_rotation,
size=rcParams['xtick.labelsize'])
t.set(**textprops)
texts.append(t)
if autopct is not None:
xt = x + pctdistance * radius * math.cos(thetam)
yt = y + pctdistance * radius * math.sin(thetam)
if isinstance(autopct, str):
s = autopct % (100. * frac)
elif callable(autopct):
s = autopct(100. * frac)
else:
raise TypeError(
'autopct must be callable or a format string')
t = self.text(xt, yt, s,
clip_on=False,
horizontalalignment='center',
verticalalignment='center')
t.set(**textprops)
autotexts.append(t)
theta1 = theta2
if not frame:
self.set(frame_on=False, xticks=[], yticks=[],
xlim=(-1.25 + center[0], 1.25 + center[0]),
ylim=(-1.25 + center[1], 1.25 + center[1]))
if autopct is None:
return slices, texts
else:
return slices, texts, autotexts
@_preprocess_data(replace_names=["x", "y", "xerr", "yerr"],
label_namer="y")
@docstring.dedent_interpd
def errorbar(self, x, y, yerr=None, xerr=None,
fmt='', ecolor=None, elinewidth=None, capsize=None,
barsabove=False, lolims=False, uplims=False,
xlolims=False, xuplims=False, errorevery=1, capthick=None,
**kwargs):
"""
Plot y versus x as lines and/or markers with attached errorbars.
*x*, *y* define the data locations, *xerr*, *yerr* define the errorbar
sizes. By default, this draws the data markers/lines as well the
errorbars. Use fmt='none' to draw errorbars without any data markers.
Parameters
----------
x, y : float or array-like
The data positions.
xerr, yerr : float or array-like, shape(N,) or shape(2, N), optional
The errorbar sizes:
- scalar: Symmetric +/- values for all data points.
- shape(N,): Symmetric +/-values for each data point.
- shape(2, N): Separate - and + values for each bar. First row
contains the lower errors, the second row contains the upper
errors.
- *None*: No errorbar.
Note that all error arrays should have *positive* values.
See :doc:`/gallery/statistics/errorbar_features`
for an example on the usage of ``xerr`` and ``yerr``.
fmt : str, default: ''
The format for the data points / data lines. See `.plot` for
details.
Use 'none' (case insensitive) to plot errorbars without any data
markers.
ecolor : color, default: None
The color of the errorbar lines. If None, use the color of the
line connecting the markers.
elinewidth : float, default: None
The linewidth of the errorbar lines. If None, the linewidth of
the current style is used.
capsize : float, default: :rc:`errorbar.capsize`
The length of the error bar caps in points.
capthick : float, default: None
An alias to the keyword argument *markeredgewidth* (a.k.a. *mew*).
This setting is a more sensible name for the property that
controls the thickness of the error bar cap in points. For
backwards compatibility, if *mew* or *markeredgewidth* are given,
then they will over-ride *capthick*. This may change in future
releases.
barsabove : bool, default: False
If True, will plot the errorbars above the plot
symbols. Default is below.
lolims, uplims, xlolims, xuplims : bool, default: False
These arguments can be used to indicate that a value gives only
upper/lower limits. In that case a caret symbol is used to
indicate this. *lims*-arguments may be scalars, or array-likes of
the same length as *xerr* and *yerr*. To use limits with inverted
axes, `~.Axes.set_xlim` or `~.Axes.set_ylim` must be called before
:meth:`errorbar`. Note the tricky parameter names: setting e.g.
*lolims* to True means that the y-value is a *lower* limit of the
True value, so, only an *upward*-pointing arrow will be drawn!
errorevery : int or (int, int), default: 1
draws error bars on a subset of the data. *errorevery* =N draws
error bars on the points (x[::N], y[::N]).
*errorevery* =(start, N) draws error bars on the points
(x[start::N], y[start::N]). e.g. errorevery=(6, 3)
adds error bars to the data at (x[6], x[9], x[12], x[15], ...).
Used to avoid overlapping error bars when two series share x-axis
values.
Returns
-------
`.ErrorbarContainer`
The container contains:
- plotline: `.Line2D` instance of x, y plot markers and/or line.
- caplines: A tuple of `.Line2D` instances of the error bar caps.
- barlinecols: A tuple of `.LineCollection` with the horizontal and
vertical error ranges.
Other Parameters
----------------
**kwargs
All other keyword arguments are passed on to the `~.Axes.plot` call
drawing the markers. For example, this code makes big red squares
with thick green edges::
x, y, yerr = rand(3, 10)
errorbar(x, y, yerr, marker='s', mfc='red',
mec='green', ms=20, mew=4)
where *mfc*, *mec*, *ms* and *mew* are aliases for the longer
property names, *markerfacecolor*, *markeredgecolor*, *markersize*
and *markeredgewidth*.
Valid kwargs for the marker properties are `.Line2D` properties:
%(_Line2D_docstr)s
"""
kwargs = cbook.normalize_kwargs(kwargs, mlines.Line2D)
# anything that comes in as 'None', drop so the default thing
# happens down stream
kwargs = {k: v for k, v in kwargs.items() if v is not None}
kwargs.setdefault('zorder', 2)
try:
offset, errorevery = errorevery
except TypeError:
offset = 0
if errorevery < 1 or int(errorevery) != errorevery:
raise ValueError(
'errorevery must be positive integer or tuple of integers')
if int(offset) != offset:
raise ValueError("errorevery's starting index must be an integer")
self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs)
plot_line = (fmt.lower() != 'none')
label = kwargs.pop("label", None)
if fmt == '':
fmt_style_kwargs = {}
else:
fmt_style_kwargs = {k: v for k, v in
zip(('linestyle', 'marker', 'color'),
_process_plot_format(fmt))
if v is not None}
if fmt == 'none':
# Remove alpha=0 color that _process_plot_format returns
fmt_style_kwargs.pop('color')
if ('color' in kwargs or 'color' in fmt_style_kwargs):
base_style = {}
if 'color' in kwargs:
base_style['color'] = kwargs.pop('color')
else:
base_style = next(self._get_lines.prop_cycler)
base_style['label'] = '_nolegend_'
base_style.update(fmt_style_kwargs)
if 'color' not in base_style:
base_style['color'] = 'C0'
if ecolor is None:
ecolor = base_style['color']
# make sure all the args are iterable; use lists not arrays to
# preserve units
if not np.iterable(x):
x = [x]
if not np.iterable(y):
y = [y]
if len(x) != len(y):
raise ValueError("'x' and 'y' must have the same size")
if xerr is not None:
if not np.iterable(xerr):
xerr = [xerr] * len(x)
if yerr is not None:
if not np.iterable(yerr):
yerr = [yerr] * len(y)
# make the style dict for the 'normal' plot line
plot_line_style = {
**base_style,
**kwargs,
'zorder': (kwargs['zorder'] - .1 if barsabove else
kwargs['zorder'] + .1),
}
# make the style dict for the line collections (the bars)
eb_lines_style = dict(base_style)
eb_lines_style.pop('marker', None)
eb_lines_style.pop('linestyle', None)
eb_lines_style['color'] = ecolor
if elinewidth:
eb_lines_style['linewidth'] = elinewidth
elif 'linewidth' in kwargs:
eb_lines_style['linewidth'] = kwargs['linewidth']
for key in ('transform', 'alpha', 'zorder', 'rasterized'):
if key in kwargs:
eb_lines_style[key] = kwargs[key]
# set up cap style dictionary
eb_cap_style = dict(base_style)
# eject any marker information from format string
eb_cap_style.pop('marker', None)
eb_lines_style.pop('markerfacecolor', None)
eb_lines_style.pop('markeredgewidth', None)
eb_lines_style.pop('markeredgecolor', None)
eb_cap_style.pop('ls', None)
eb_cap_style['linestyle'] = 'none'
if capsize is None:
capsize = rcParams["errorbar.capsize"]
if capsize > 0:
eb_cap_style['markersize'] = 2. * capsize
if capthick is not None:
eb_cap_style['markeredgewidth'] = capthick
# For backwards-compat, allow explicit setting of
# 'markeredgewidth' to over-ride capthick.
for key in ('markeredgewidth', 'transform', 'alpha',
'zorder', 'rasterized'):
if key in kwargs:
eb_cap_style[key] = kwargs[key]
eb_cap_style['color'] = ecolor
data_line = None
if plot_line:
data_line = mlines.Line2D(x, y, **plot_line_style)
self.add_line(data_line)
barcols = []
caplines = []
# arrays fine here, they are booleans and hence not units
lolims = np.broadcast_to(lolims, len(x)).astype(bool)
uplims = np.broadcast_to(uplims, len(x)).astype(bool)
xlolims = np.broadcast_to(xlolims, len(x)).astype(bool)
xuplims = np.broadcast_to(xuplims, len(x)).astype(bool)
everymask = np.zeros(len(x), bool)
everymask[offset::errorevery] = True
def apply_mask(arrays, mask):
# Return, for each array in *arrays*, the elements for which *mask*
# is True, without using fancy indexing.
return [[*itertools.compress(array, mask)] for array in arrays]
def extract_err(name, err, data, lolims, uplims):
"""
Private function to compute error bars.
Parameters
----------
name : {'x', 'y'}
Name used in the error message.
err : array-like
xerr or yerr from errorbar().
data : array-like
x or y from errorbar().
lolims : array-like
Error is only applied on **upper** side when this is True. See
the note in the main docstring about this parameter's name.
uplims : array-like
Error is only applied on **lower** side when this is True. See
the note in the main docstring about this parameter's name.
"""
try: # Asymmetric error: pair of 1D iterables.
a, b = err
iter(a)
iter(b)
except (TypeError, ValueError):
a = b = err # Symmetric error: 1D iterable.
if np.ndim(a) > 1 or np.ndim(b) > 1:
raise ValueError(
f"{name}err must be a scalar or a 1D or (2, n) array-like")
# Using list comprehensions rather than arrays to preserve units.
for e in [a, b]:
if len(data) != len(e):
raise ValueError(
f"The lengths of the data ({len(data)}) and the "
f"error {len(e)} do not match")
low = [v if lo else v - e for v, e, lo in zip(data, a, lolims)]
high = [v if up else v + e for v, e, up in zip(data, b, uplims)]
return low, high
if xerr is not None:
left, right = extract_err('x', xerr, x, xlolims, xuplims)
barcols.append(self.hlines(
*apply_mask([y, left, right], everymask), **eb_lines_style))
# select points without upper/lower limits in x and
# draw normal errorbars for these points
noxlims = ~(xlolims | xuplims)
if noxlims.any() and capsize > 0:
yo, lo, ro = apply_mask([y, left, right], noxlims & everymask)
caplines.extend([
mlines.Line2D(lo, yo, marker='|', **eb_cap_style),
mlines.Line2D(ro, yo, marker='|', **eb_cap_style)])
if xlolims.any():
xo, yo, lo, ro = apply_mask([x, y, left, right],
xlolims & everymask)
if self.xaxis_inverted():
marker = mlines.CARETLEFTBASE
else:
marker = mlines.CARETRIGHTBASE
caplines.append(mlines.Line2D(
ro, yo, ls='None', marker=marker, **eb_cap_style))
if capsize > 0:
caplines.append(mlines.Line2D(
xo, yo, marker='|', **eb_cap_style))
if xuplims.any():
xo, yo, lo, ro = apply_mask([x, y, left, right],
xuplims & everymask)
if self.xaxis_inverted():
marker = mlines.CARETRIGHTBASE
else:
marker = mlines.CARETLEFTBASE
caplines.append(mlines.Line2D(
lo, yo, ls='None', marker=marker, **eb_cap_style))
if capsize > 0:
caplines.append(mlines.Line2D(
xo, yo, marker='|', **eb_cap_style))
if yerr is not None:
lower, upper = extract_err('y', yerr, y, lolims, uplims)
barcols.append(self.vlines(
*apply_mask([x, lower, upper], everymask), **eb_lines_style))
# select points without upper/lower limits in y and
# draw normal errorbars for these points
noylims = ~(lolims | uplims)
if noylims.any() and capsize > 0:
xo, lo, uo = apply_mask([x, lower, upper], noylims & everymask)
caplines.extend([
mlines.Line2D(xo, lo, marker='_', **eb_cap_style),
mlines.Line2D(xo, uo, marker='_', **eb_cap_style)])
if lolims.any():
xo, yo, lo, uo = apply_mask([x, y, lower, upper],
lolims & everymask)
if self.yaxis_inverted():
marker = mlines.CARETDOWNBASE
else:
marker = mlines.CARETUPBASE
caplines.append(mlines.Line2D(
xo, uo, ls='None', marker=marker, **eb_cap_style))
if capsize > 0:
caplines.append(mlines.Line2D(
xo, yo, marker='_', **eb_cap_style))
if uplims.any():
xo, yo, lo, uo = apply_mask([x, y, lower, upper],
uplims & everymask)
if self.yaxis_inverted():
marker = mlines.CARETUPBASE
else:
marker = mlines.CARETDOWNBASE
caplines.append(mlines.Line2D(
xo, lo, ls='None', marker=marker, **eb_cap_style))
if capsize > 0:
caplines.append(mlines.Line2D(
xo, yo, marker='_', **eb_cap_style))
for l in caplines:
self.add_line(l)
self._request_autoscale_view()
errorbar_container = ErrorbarContainer(
(data_line, tuple(caplines), tuple(barcols)),
has_xerr=(xerr is not None), has_yerr=(yerr is not None),
label=label)
self.containers.append(errorbar_container)
return errorbar_container # (l0, caplines, barcols)
@_preprocess_data()
def boxplot(self, x, notch=None, sym=None, vert=None, whis=None,
positions=None, widths=None, patch_artist=None,
bootstrap=None, usermedians=None, conf_intervals=None,
meanline=None, showmeans=None, showcaps=None,
showbox=None, showfliers=None, boxprops=None,
labels=None, flierprops=None, medianprops=None,
meanprops=None, capprops=None, whiskerprops=None,
manage_ticks=True, autorange=False, zorder=None):
"""
Make a box and whisker plot.
Make a box and whisker plot for each column of *x* or each
vector in sequence *x*. The box extends from the lower to
upper quartile values of the data, with a line at the median.
The whiskers extend from the box to show the range of the
data. Flier points are those past the end of the whiskers.
Parameters
----------
x : Array or a sequence of vectors.
The input data.
notch : bool, default: False
Whether to draw a noteched box plot (`True`), or a rectangular box
plot (`False`). The notches represent the confidence interval (CI)
around the median. The documentation for *bootstrap* describes how
the locations of the notches are computed.
.. note::
In cases where the values of the CI are less than the
lower quartile or greater than the upper quartile, the
notches will extend beyond the box, giving it a
distinctive "flipped" appearance. This is expected
behavior and consistent with other statistical
visualization packages.
sym : str, optional
The default symbol for flier points. An empty string ('') hides
the fliers. If `None`, then the fliers default to 'b+'. More
control is provided by the *flierprops* parameter.
vert : bool, default: True
If `True`, draws vertical boxes.
If `False`, draw horizontal boxes.
whis : float or (float, float), default: 1.5
The position of the whiskers.
If a float, the lower whisker is at the lowest datum above
``Q1 - whis*(Q3-Q1)``, and the upper whisker at the highest datum
below ``Q3 + whis*(Q3-Q1)``, where Q1 and Q3 are the first and
third quartiles. The default value of ``whis = 1.5`` corresponds
to Tukey's original definition of boxplots.
If a pair of floats, they indicate the percentiles at which to
draw the whiskers (e.g., (5, 95)). In particular, setting this to
(0, 100) results in whiskers covering the whole range of the data.
"range" is a deprecated synonym for (0, 100).
In the edge case where ``Q1 == Q3``, *whis* is automatically set
to (0, 100) (cover the whole range of the data) if *autorange* is
True.
Beyond the whiskers, data are considered outliers and are plotted
as individual points.
bootstrap : int, optional
Specifies whether to bootstrap the confidence intervals
around the median for notched boxplots. If *bootstrap* is
None, no bootstrapping is performed, and notches are
calculated using a Gaussian-based asymptotic approximation
(see McGill, R., Tukey, J.W., and Larsen, W.A., 1978, and
Kendall and Stuart, 1967). Otherwise, bootstrap specifies
the number of times to bootstrap the median to determine its
95% confidence intervals. Values between 1000 and 10000 are
recommended.
usermedians : array-like, optional
A 1D array-like of length ``len(x)``. Each entry that is not
`None` forces the value of the median for the corresponding
dataset. For entries that are `None`, the medians are computed
by Matplotlib as normal.
conf_intervals : array-like, optional
A 2D array-like of shape ``(len(x), 2)``. Each entry that is not
None forces the location of the corresponding notch (which is
only drawn if *notch* is `True`). For entries that are `None`,
the notches are computed by the method specified by the other
parameters (e.g., *bootstrap*).
positions : array-like, optional
Sets the positions of the boxes. The ticks and limits are
automatically set to match the positions. Defaults to
``range(1, N+1)`` where N is the number of boxes to be drawn.
widths : float or array-like
Sets the width of each box either with a scalar or a
sequence. The default is 0.5, or ``0.15*(distance between
extreme positions)``, if that is smaller.
patch_artist : bool, default: False
If `False` produces boxes with the Line2D artist. Otherwise,
boxes and drawn with Patch artists.
labels : sequence, optional
Labels for each dataset (one per dataset).
manage_ticks : bool, default: True
If True, the tick locations and labels will be adjusted to match
the boxplot positions.
autorange : bool, default: False
When `True` and the data are distributed such that the 25th and
75th percentiles are equal, *whis* is set to (0, 100) such
that the whisker ends are at the minimum and maximum of the data.
meanline : bool, default: False
If `True` (and *showmeans* is `True`), will try to render the
mean as a line spanning the full width of the box according to
*meanprops* (see below). Not recommended if *shownotches* is also
True. Otherwise, means will be shown as points.
zorder : float, default: ``Line2D.zorder = 2``
Sets the zorder of the boxplot.
Returns
-------
dict
A dictionary mapping each component of the boxplot to a list
of the `.Line2D` instances created. That dictionary has the
following keys (assuming vertical boxplots):
- ``boxes``: the main body of the boxplot showing the
quartiles and the median's confidence intervals if
enabled.
- ``medians``: horizontal lines at the median of each box.
- ``whiskers``: the vertical lines extending to the most
extreme, non-outlier data points.
- ``caps``: the horizontal lines at the ends of the
whiskers.
- ``fliers``: points representing data that extend beyond
the whiskers (fliers).
- ``means``: points or lines representing the means.
Other Parameters
----------------
showcaps : bool, default: True
Show the caps on the ends of whiskers.
showbox : bool, default: True
Show the central box.
showfliers : bool, default: True
Show the outliers beyond the caps.
showmeans : bool, default: False
Show the arithmetic means.
capprops : dict, default: None
The style of the caps.
boxprops : dict, default: None
The style of the box.
whiskerprops : dict, default: None
The style of the whiskers.
flierprops : dict, default: None
The style of the fliers.
medianprops : dict, default: None
The style of the median.
meanprops : dict, default: None
The style of the mean.
"""
# Missing arguments default to rcParams.
if whis is None:
whis = rcParams['boxplot.whiskers']
if bootstrap is None:
bootstrap = rcParams['boxplot.bootstrap']
bxpstats = cbook.boxplot_stats(x, whis=whis, bootstrap=bootstrap,
labels=labels, autorange=autorange)
if notch is None:
notch = rcParams['boxplot.notch']
if vert is None:
vert = rcParams['boxplot.vertical']
if patch_artist is None:
patch_artist = rcParams['boxplot.patchartist']
if meanline is None:
meanline = rcParams['boxplot.meanline']
if showmeans is None:
showmeans = rcParams['boxplot.showmeans']
if showcaps is None:
showcaps = rcParams['boxplot.showcaps']
if showbox is None:
showbox = rcParams['boxplot.showbox']
if showfliers is None:
showfliers = rcParams['boxplot.showfliers']
if boxprops is None:
boxprops = {}
if whiskerprops is None:
whiskerprops = {}
if capprops is None:
capprops = {}
if medianprops is None:
medianprops = {}
if meanprops is None:
meanprops = {}
if flierprops is None:
flierprops = {}
if patch_artist:
boxprops['linestyle'] = 'solid' # Not consistent with bxp.
if 'color' in boxprops:
boxprops['edgecolor'] = boxprops.pop('color')
# if non-default sym value, put it into the flier dictionary
# the logic for providing the default symbol ('b+') now lives
# in bxp in the initial value of final_flierprops
# handle all of the *sym* related logic here so we only have to pass
# on the flierprops dict.
if sym is not None:
# no-flier case, which should really be done with
# 'showfliers=False' but none-the-less deal with it to keep back
# compatibility
if sym == '':
# blow away existing dict and make one for invisible markers
flierprops = dict(linestyle='none', marker='', color='none')
# turn the fliers off just to be safe
showfliers = False
# now process the symbol string
else:
# process the symbol string
# discarded linestyle
_, marker, color = _process_plot_format(sym)
# if we have a marker, use it
if marker is not None:
flierprops['marker'] = marker
# if we have a color, use it
if color is not None:
# assume that if color is passed in the user want
# filled symbol, if the users want more control use
# flierprops
flierprops['color'] = color
flierprops['markerfacecolor'] = color
flierprops['markeredgecolor'] = color
# replace medians if necessary:
if usermedians is not None:
if (len(np.ravel(usermedians)) != len(bxpstats) or
np.shape(usermedians)[0] != len(bxpstats)):
raise ValueError(
"'usermedians' and 'x' have different lengths")
else:
# reassign medians as necessary
for stats, med in zip(bxpstats, usermedians):
if med is not None:
stats['med'] = med
if conf_intervals is not None:
if len(conf_intervals) != len(bxpstats):
raise ValueError(
"'conf_intervals' and 'x' have different lengths")
else:
for stats, ci in zip(bxpstats, conf_intervals):
if ci is not None:
if len(ci) != 2:
raise ValueError('each confidence interval must '
'have two values')
else:
if ci[0] is not None:
stats['cilo'] = ci[0]
if ci[1] is not None:
stats['cihi'] = ci[1]
artists = self.bxp(bxpstats, positions=positions, widths=widths,
vert=vert, patch_artist=patch_artist,
shownotches=notch, showmeans=showmeans,
showcaps=showcaps, showbox=showbox,
boxprops=boxprops, flierprops=flierprops,
medianprops=medianprops, meanprops=meanprops,
meanline=meanline, showfliers=showfliers,
capprops=capprops, whiskerprops=whiskerprops,
manage_ticks=manage_ticks, zorder=zorder)
return artists
def bxp(self, bxpstats, positions=None, widths=None, vert=True,
patch_artist=False, shownotches=False, showmeans=False,
showcaps=True, showbox=True, showfliers=True,
boxprops=None, whiskerprops=None, flierprops=None,
medianprops=None, capprops=None, meanprops=None,
meanline=False, manage_ticks=True, zorder=None):
"""
Drawing function for box and whisker plots.
Make a box and whisker plot for each column of *x* or each
vector in sequence *x*. The box extends from the lower to
upper quartile values of the data, with a line at the median.
The whiskers extend from the box to show the range of the
data. Flier points are those past the end of the whiskers.
Parameters
----------
bxpstats : list of dicts
A list of dictionaries containing stats for each boxplot.
Required keys are:
- ``med``: The median (scalar float).
- ``q1``: The first quartile (25th percentile) (scalar
float).
- ``q3``: The third quartile (75th percentile) (scalar
float).
- ``whislo``: Lower bound of the lower whisker (scalar
float).
- ``whishi``: Upper bound of the upper whisker (scalar
float).
Optional keys are:
- ``mean``: The mean (scalar float). Needed if
``showmeans=True``.
- ``fliers``: Data beyond the whiskers (sequence of floats).
Needed if ``showfliers=True``.
- ``cilo`` & ``cihi``: Lower and upper confidence intervals
about the median. Needed if ``shownotches=True``.
- ``label``: Name of the dataset (string). If available,
this will be used a tick label for the boxplot
positions : array-like, default: [1, 2, ..., n]
Sets the positions of the boxes. The ticks and limits
are automatically set to match the positions.
widths : array-like, default: None
Either a scalar or a vector and sets the width of each
box. The default is ``0.15*(distance between extreme
positions)``, clipped to no less than 0.15 and no more than
0.5.
vert : bool, default: True
If `True` (default), makes the boxes vertical. If `False`,
makes horizontal boxes.
patch_artist : bool, default: False
If `False` produces boxes with the `.Line2D` artist.
If `True` produces boxes with the `~matplotlib.patches.Patch` artist.
shownotches : bool, default: False
If `False` (default), produces a rectangular box plot.
If `True`, will produce a notched box plot
showmeans : bool, default: False
If `True`, will toggle on the rendering of the means
showcaps : bool, default: True
If `True`, will toggle on the rendering of the caps
showbox : bool, default: True
If `True`, will toggle on the rendering of the box
showfliers : bool, default: True
If `True`, will toggle on the rendering of the fliers
boxprops : dict or None (default)
If provided, will set the plotting style of the boxes
whiskerprops : dict or None (default)
If provided, will set the plotting style of the whiskers
capprops : dict or None (default)
If provided, will set the plotting style of the caps
flierprops : dict or None (default)
If provided will set the plotting style of the fliers
medianprops : dict or None (default)
If provided, will set the plotting style of the medians
meanprops : dict or None (default)
If provided, will set the plotting style of the means
meanline : bool, default: False
If `True` (and *showmeans* is `True`), will try to render the mean
as a line spanning the full width of the box according to
*meanprops*. Not recommended if *shownotches* is also True.
Otherwise, means will be shown as points.
manage_ticks : bool, default: True
If True, the tick locations and labels will be adjusted to match the
boxplot positions.
zorder : float, default: ``Line2D.zorder = 2``
The zorder of the resulting boxplot.
Returns
-------
dict
A dictionary mapping each component of the boxplot to a list
of the `.Line2D` instances created. That dictionary has the
following keys (assuming vertical boxplots):
- ``boxes``: the main body of the boxplot showing the
quartiles and the median's confidence intervals if
enabled.
- ``medians``: horizontal lines at the median of each box.
- ``whiskers``: the vertical lines extending to the most
extreme, non-outlier data points.
- ``caps``: the horizontal lines at the ends of the
whiskers.
- ``fliers``: points representing data that extend beyond
the whiskers (fliers).
- ``means``: points or lines representing the means.
Examples
--------
.. plot:: gallery/statistics/bxp.py
"""
# lists of artists to be output
whiskers = []
caps = []
boxes = []
medians = []
means = []
fliers = []
# empty list of xticklabels
datalabels = []
# Use default zorder if none specified
if zorder is None:
zorder = mlines.Line2D.zorder
zdelta = 0.1
def line_props_with_rcdefaults(subkey, explicit, zdelta=0,
use_marker=True):
d = {k.split('.')[-1]: v for k, v in rcParams.items()
if k.startswith(f'boxplot.{subkey}')}
d['zorder'] = zorder + zdelta
if not use_marker:
d['marker'] = ''
if explicit is not None:
d.update(cbook.normalize_kwargs(explicit, mlines.Line2D))
return d
# box properties
if patch_artist:
final_boxprops = dict(
linestyle=rcParams['boxplot.boxprops.linestyle'],
linewidth=rcParams['boxplot.boxprops.linewidth'],
edgecolor=rcParams['boxplot.boxprops.color'],
facecolor=('white' if rcParams['_internal.classic_mode'] else
rcParams['patch.facecolor']),
zorder=zorder,
)
if boxprops is not None:
final_boxprops.update(
cbook.normalize_kwargs(boxprops, mpatches.PathPatch))
else:
final_boxprops = line_props_with_rcdefaults('boxprops', boxprops,
use_marker=False)
final_whiskerprops = line_props_with_rcdefaults(
'whiskerprops', whiskerprops, use_marker=False)
final_capprops = line_props_with_rcdefaults(
'capprops', capprops, use_marker=False)
final_flierprops = line_props_with_rcdefaults(
'flierprops', flierprops)
final_medianprops = line_props_with_rcdefaults(
'medianprops', medianprops, zdelta, use_marker=False)
final_meanprops = line_props_with_rcdefaults(
'meanprops', meanprops, zdelta)
removed_prop = 'marker' if meanline else 'linestyle'
# Only remove the property if it's not set explicitly as a parameter.
if meanprops is None or removed_prop not in meanprops:
final_meanprops[removed_prop] = ''
def patch_list(xs, ys, **kwargs):
path = mpath.Path(
# Last vertex will have a CLOSEPOLY code and thus be ignored.
np.append(np.column_stack([xs, ys]), [(0, 0)], 0),
closed=True)
patch = mpatches.PathPatch(path, **kwargs)
self.add_artist(patch)
return [patch]
# vertical or horizontal plot?
if vert:
def doplot(*args, **kwargs):
return self.plot(*args, **kwargs)
def dopatch(xs, ys, **kwargs):
return patch_list(xs, ys, **kwargs)
else:
def doplot(*args, **kwargs):
shuffled = []
for i in range(0, len(args), 2):
shuffled.extend([args[i + 1], args[i]])
return self.plot(*shuffled, **kwargs)
def dopatch(xs, ys, **kwargs):
xs, ys = ys, xs # flip X, Y
return patch_list(xs, ys, **kwargs)
# input validation
N = len(bxpstats)
datashape_message = ("List of boxplot statistics and `{0}` "
"values must have same the length")
# check position
if positions is None:
positions = list(range(1, N + 1))
elif len(positions) != N:
raise ValueError(datashape_message.format("positions"))
positions = np.array(positions)
if len(positions) > 0 and not isinstance(positions[0], Number):
raise TypeError("positions should be an iterable of numbers")
# width
if widths is None:
widths = [np.clip(0.15 * np.ptp(positions), 0.15, 0.5)] * N
elif np.isscalar(widths):
widths = [widths] * N
elif len(widths) != N:
raise ValueError(datashape_message.format("widths"))
for pos, width, stats in zip(positions, widths, bxpstats):
# try to find a new label
datalabels.append(stats.get('label', pos))
# whisker coords
whisker_x = np.ones(2) * pos
whiskerlo_y = np.array([stats['q1'], stats['whislo']])
whiskerhi_y = np.array([stats['q3'], stats['whishi']])
# cap coords
cap_left = pos - width * 0.25
cap_right = pos + width * 0.25
cap_x = np.array([cap_left, cap_right])
cap_lo = np.ones(2) * stats['whislo']
cap_hi = np.ones(2) * stats['whishi']
# box and median coords
box_left = pos - width * 0.5
box_right = pos + width * 0.5
med_y = [stats['med'], stats['med']]
# notched boxes
if shownotches:
box_x = [box_left, box_right, box_right, cap_right, box_right,
box_right, box_left, box_left, cap_left, box_left,
box_left]
box_y = [stats['q1'], stats['q1'], stats['cilo'],
stats['med'], stats['cihi'], stats['q3'],
stats['q3'], stats['cihi'], stats['med'],
stats['cilo'], stats['q1']]
med_x = cap_x
# plain boxes
else:
box_x = [box_left, box_right, box_right, box_left, box_left]
box_y = [stats['q1'], stats['q1'], stats['q3'], stats['q3'],
stats['q1']]
med_x = [box_left, box_right]
# maybe draw the box:
if showbox:
if patch_artist:
boxes.extend(dopatch(box_x, box_y, **final_boxprops))
else:
boxes.extend(doplot(box_x, box_y, **final_boxprops))
# draw the whiskers
whiskers.extend(doplot(
whisker_x, whiskerlo_y, **final_whiskerprops
))
whiskers.extend(doplot(
whisker_x, whiskerhi_y, **final_whiskerprops
))
# maybe draw the caps:
if showcaps:
caps.extend(doplot(cap_x, cap_lo, **final_capprops))
caps.extend(doplot(cap_x, cap_hi, **final_capprops))
# draw the medians
medians.extend(doplot(med_x, med_y, **final_medianprops))
# maybe draw the means
if showmeans:
if meanline:
means.extend(doplot(
[box_left, box_right], [stats['mean'], stats['mean']],
**final_meanprops
))
else:
means.extend(doplot(
[pos], [stats['mean']], **final_meanprops
))
# maybe draw the fliers
if showfliers:
# fliers coords
flier_x = np.full(len(stats['fliers']), pos, dtype=np.float64)
flier_y = stats['fliers']
fliers.extend(doplot(
flier_x, flier_y, **final_flierprops
))
if manage_ticks:
axis_name = "x" if vert else "y"
interval = getattr(self.dataLim, f"interval{axis_name}")
axis = getattr(self, f"{axis_name}axis")
positions = axis.convert_units(positions)
# The 0.5 additional padding ensures reasonable-looking boxes
# even when drawing a single box. We set the sticky edge to
# prevent margins expansion, in order to match old behavior (back
# when separate calls to boxplot() would completely reset the axis
# limits regardless of what was drawn before). The sticky edges
# are attached to the median lines, as they are always present.
interval[:] = (min(interval[0], min(positions) - .5),
max(interval[1], max(positions) + .5))
for median, position in zip(medians, positions):
getattr(median.sticky_edges, axis_name).extend(
[position - .5, position + .5])
# Modified from Axis.set_ticks and Axis.set_ticklabels.
locator = axis.get_major_locator()
if not isinstance(axis.get_major_locator(),
mticker.FixedLocator):
locator = mticker.FixedLocator([])
axis.set_major_locator(locator)
locator.locs = np.array([*locator.locs, *positions])
formatter = axis.get_major_formatter()
if not isinstance(axis.get_major_formatter(),
mticker.FixedFormatter):
formatter = mticker.FixedFormatter([])
axis.set_major_formatter(formatter)
formatter.seq = [*formatter.seq, *datalabels]
self._request_autoscale_view(
scalex=self._autoscaleXon, scaley=self._autoscaleYon)
return dict(whiskers=whiskers, caps=caps, boxes=boxes,
medians=medians, fliers=fliers, means=means)
@staticmethod
def _parse_scatter_color_args(c, edgecolors, kwargs, xsize,
get_next_color_func):
"""
Helper function to process color related arguments of `.Axes.scatter`.
Argument precedence for facecolors:
- c (if not None)
- kwargs['facecolors']
- kwargs['facecolor']
- kwargs['color'] (==kwcolor)
- 'b' if in classic mode else the result of ``get_next_color_func()``
Argument precedence for edgecolors:
- edgecolors (is an explicit kw argument in scatter())
- kwargs['edgecolor']
- kwargs['color'] (==kwcolor)
- 'face' if not in classic mode else None
Parameters
----------
c : color or sequence or sequence of color or None
See argument description of `.Axes.scatter`.
edgecolors : color or sequence of color or {'face', 'none'} or None
See argument description of `.Axes.scatter`.
kwargs : dict
Additional kwargs. If these keys exist, we pop and process them:
'facecolors', 'facecolor', 'edgecolor', 'color'
Note: The dict is modified by this function.
xsize : int
The size of the x and y arrays passed to `.Axes.scatter`.
get_next_color_func : callable
A callable that returns a color. This color is used as facecolor
if no other color is provided.
Note, that this is a function rather than a fixed color value to
support conditional evaluation of the next color. As of the
current implementation obtaining the next color from the
property cycle advances the cycle. This must only happen if we
actually use the color, which will only be decided within this
method.
Returns
-------
c
The input *c* if it was not *None*, else a color derived from the
other inputs or defaults.
colors : array(N, 4) or None
The facecolors as RGBA values, or *None* if a colormap is used.
edgecolors
The edgecolor.
"""
facecolors = kwargs.pop('facecolors', None)
facecolors = kwargs.pop('facecolor', facecolors)
edgecolors = kwargs.pop('edgecolor', edgecolors)
kwcolor = kwargs.pop('color', None)
if kwcolor is not None and c is not None:
raise ValueError("Supply a 'c' argument or a 'color'"
" kwarg but not both; they differ but"
" their functionalities overlap.")
if kwcolor is not None:
try:
mcolors.to_rgba_array(kwcolor)
except ValueError as err:
raise ValueError(
"'color' kwarg must be an color or sequence of color "
"specs. For a sequence of values to be color-mapped, use "
"the 'c' argument instead.") from err
if edgecolors is None:
edgecolors = kwcolor
if facecolors is None:
facecolors = kwcolor
if edgecolors is None and not rcParams['_internal.classic_mode']:
edgecolors = rcParams['scatter.edgecolors']
c_was_none = c is None
if c is None:
c = (facecolors if facecolors is not None
else "b" if rcParams['_internal.classic_mode']
else get_next_color_func())
c_is_string_or_strings = (
isinstance(c, str)
or (np.iterable(c) and len(c) > 0
and isinstance(cbook.safe_first_element(c), str)))
def invalid_shape_exception(csize, xsize):
return ValueError(
f"'c' argument has {csize} elements, which is inconsistent "
f"with 'x' and 'y' with size {xsize}.")
c_is_mapped = False # Unless proven otherwise below.
valid_shape = True # Unless proven otherwise below.
if not c_was_none and kwcolor is None and not c_is_string_or_strings:
try: # First, does 'c' look suitable for value-mapping?
c = np.asanyarray(c, dtype=float)
except ValueError:
pass # Failed to convert to float array; must be color specs.
else:
# handle the documented special case of a 2D array with 1
# row which as RGB(A) to broadcast.
if c.shape == (1, 4) or c.shape == (1, 3):
c_is_mapped = False
if c.size != xsize:
valid_shape = False
# If c can be either mapped values or a RGB(A) color, prefer
# the former if shapes match, the latter otherwise.
elif c.size == xsize:
c = c.ravel()
c_is_mapped = True
else: # Wrong size; it must not be intended for mapping.
if c.shape in ((3,), (4,)):
_log.warning(
"*c* argument looks like a single numeric RGB or "
"RGBA sequence, which should be avoided as value-"
"mapping will have precedence in case its length "
"matches with *x* & *y*. Please use the *color* "
"keyword-argument or provide a 2-D array "
"with a single row if you intend to specify "
"the same RGB or RGBA value for all points.")
valid_shape = False
if not c_is_mapped:
try: # Is 'c' acceptable as PathCollection facecolors?
colors = mcolors.to_rgba_array(c)
except (TypeError, ValueError) as err:
if "RGBA values should be within 0-1 range" in str(err):
raise
else:
if not valid_shape:
raise invalid_shape_exception(c.size, xsize) from err
# Both the mapping *and* the RGBA conversion failed: pretty
# severe failure => one may appreciate a verbose feedback.
raise ValueError(
f"'c' argument must be a color, a sequence of colors, "
f"or a sequence of numbers, not {c}") from err
else:
if len(colors) not in (0, 1, xsize):
# NB: remember that a single color is also acceptable.
# Besides *colors* will be an empty array if c == 'none'.
raise invalid_shape_exception(len(colors), xsize)
else:
colors = None # use cmap, norm after collection is created
return c, colors, edgecolors
@_preprocess_data(replace_names=["x", "y", "s", "linewidths",
"edgecolors", "c", "facecolor",
"facecolors", "color"],
label_namer="y")
@cbook._delete_parameter("3.2", "verts")
def scatter(self, x, y, s=None, c=None, marker=None, cmap=None, norm=None,
vmin=None, vmax=None, alpha=None, linewidths=None,
verts=None, edgecolors=None, *, plotnonfinite=False,
**kwargs):
"""
A scatter plot of *y* vs. *x* with varying marker size and/or color.
Parameters
----------
x, y : float or array-like, shape (n, )
The data positions.
s : float or array-like, shape (n, ), optional
The marker size in points**2.
Default is ``rcParams['lines.markersize'] ** 2``.
c : array-like or list of colors or color, optional
The marker colors. Possible values:
- A scalar or sequence of n numbers to be mapped to colors using
*cmap* and *norm*.
- A 2-D array in which the rows are RGB or RGBA.
- A sequence of colors of length n.
- A single color format string.
Note that *c* should not be a single numeric RGB or RGBA sequence
because that is indistinguishable from an array of values to be
colormapped. If you want to specify the same RGB or RGBA value for
all points, use a 2-D array with a single row. Otherwise, value-
matching will have precedence in case of a size matching with *x*
and *y*.
If you wish to specify a single color for all points
prefer the *color* keyword argument.
Defaults to `None`. In that case the marker color is determined
by the value of *color*, *facecolor* or *facecolors*. In case
those are not specified or `None`, the marker color is determined
by the next color of the ``Axes``' current "shape and fill" color
cycle. This cycle defaults to :rc:`axes.prop_cycle`.
marker : `~.markers.MarkerStyle`, default: :rc:`scatter.marker`
The marker style. *marker* can be either an instance of the class
or the text shorthand for a particular marker.
See :mod:`matplotlib.markers` for more information about marker
styles.
cmap : str or `~matplotlib.colors.Colormap`, default: :rc:`image.cmap`
A `.Colormap` instance or registered colormap name. *cmap* is only
used if *c* is an array of floats.
norm : `~matplotlib.colors.Normalize`, default: None
If *c* is an array of floats, *norm* is used to scale the color
data, *c*, in the range 0 to 1, in order to map into the colormap
*cmap*.
If *None*, use the default `.colors.Normalize`.
vmin, vmax : float, default: None
*vmin* and *vmax* are used in conjunction with the default norm to
map the color array *c* to the colormap *cmap*. If None, the
respective min and max of the color array is used.
It is deprecated to use *vmin*/*vmax* when *norm* is given.
alpha : float, default: None
The alpha blending value, between 0 (transparent) and 1 (opaque).
linewidths : float or array-like, default: :rc:`lines.linewidth`
The linewidth of the marker edges. Note: The default *edgecolors*
is 'face'. You may want to change this as well.
edgecolors : {'face', 'none', *None*} or color or sequence of color, \
default: :rc:`scatter.edgecolors`
The edge color of the marker. Possible values:
- 'face': The edge color will always be the same as the face color.
- 'none': No patch boundary will be drawn.
- A color or sequence of colors.
For non-filled markers, the *edgecolors* kwarg is ignored and
forced to 'face' internally.
plotnonfinite : bool, default: False
Set to plot points with nonfinite *c*, in conjunction with
`~matplotlib.colors.Colormap.set_bad`.
Returns
-------
`~matplotlib.collections.PathCollection`
Other Parameters
----------------
**kwargs : `~matplotlib.collections.Collection` properties
See Also
--------
plot : To plot scatter plots when markers are identical in size and
color.
Notes
-----
* The `.plot` function will be faster for scatterplots where markers
don't vary in size or color.
* Any or all of *x*, *y*, *s*, and *c* may be masked arrays, in which
case all masks will be combined and only unmasked points will be
plotted.
* Fundamentally, scatter works with 1-D arrays; *x*, *y*, *s*, and *c*
may be input as N-D arrays, but within scatter they will be
flattened. The exception is *c*, which will be flattened only if its
size matches the size of *x* and *y*.
"""
# Process **kwargs to handle aliases, conflicts with explicit kwargs:
self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs)
x = self.convert_xunits(x)
y = self.convert_yunits(y)
# np.ma.ravel yields an ndarray, not a masked array,
# unless its argument is a masked array.
x = np.ma.ravel(x)
y = np.ma.ravel(y)
if x.size != y.size:
raise ValueError("x and y must be the same size")
if s is None:
s = (20 if rcParams['_internal.classic_mode'] else
rcParams['lines.markersize'] ** 2.0)
s = np.ma.ravel(s)
if len(s) not in (1, x.size):
raise ValueError("s must be a scalar, or the same size as x and y")
c, colors, edgecolors = \
self._parse_scatter_color_args(
c, edgecolors, kwargs, x.size,
get_next_color_func=self._get_patches_for_fill.get_next_color)
if plotnonfinite and colors is None:
c = np.ma.masked_invalid(c)
x, y, s, edgecolors, linewidths = \
cbook._combine_masks(x, y, s, edgecolors, linewidths)
else:
x, y, s, c, colors, edgecolors, linewidths = \
cbook._combine_masks(
x, y, s, c, colors, edgecolors, linewidths)
scales = s # Renamed for readability below.
# load default marker from rcParams
if marker is None:
marker = rcParams['scatter.marker']
if isinstance(marker, mmarkers.MarkerStyle):
marker_obj = marker
else:
marker_obj = mmarkers.MarkerStyle(marker)
path = marker_obj.get_path().transformed(
marker_obj.get_transform())
if not marker_obj.is_filled():
edgecolors = 'face'
if linewidths is None:
linewidths = rcParams['lines.linewidth']
elif np.iterable(linewidths):
linewidths = [
lw if lw is not None else rcParams['lines.linewidth']
for lw in linewidths]
offsets = np.ma.column_stack([x, y])
collection = mcoll.PathCollection(
(path,), scales,
facecolors=colors,
edgecolors=edgecolors,
linewidths=linewidths,
offsets=offsets,
transOffset=kwargs.pop('transform', self.transData),
alpha=alpha
)
collection.set_transform(mtransforms.IdentityTransform())
collection.update(kwargs)
if colors is None:
collection.set_array(c)
collection.set_cmap(cmap)
collection.set_norm(norm)
collection._scale_norm(norm, vmin, vmax)
# Classic mode only:
# ensure there are margins to allow for the
# finite size of the symbols. In v2.x, margins
# are present by default, so we disable this
# scatter-specific override.
if rcParams['_internal.classic_mode']:
if self._xmargin < 0.05 and x.size > 0:
self.set_xmargin(0.05)
if self._ymargin < 0.05 and x.size > 0:
self.set_ymargin(0.05)
self.add_collection(collection)
self._request_autoscale_view()
return collection
@_preprocess_data(replace_names=["x", "y"], label_namer="y")
@docstring.dedent_interpd
def hexbin(self, x, y, C=None, gridsize=100, bins=None,
xscale='linear', yscale='linear', extent=None,
cmap=None, norm=None, vmin=None, vmax=None,
alpha=None, linewidths=None, edgecolors='face',
reduce_C_function=np.mean, mincnt=None, marginals=False,
**kwargs):
"""
Make a 2D hexagonal binning plot of points *x*, *y*.
If *C* is *None*, the value of the hexagon is determined by the number
of points in the hexagon. Otherwise, *C* specifies values at the
coordinate (x[i], y[i]). For each hexagon, these values are reduced
using *reduce_C_function*.
Parameters
----------
x, y : array-like
The data positions. *x* and *y* must be of the same length.
C : array-like, optional
If given, these values are accumulated in the bins. Otherwise,
every point has a value of 1. Must be of the same length as *x*
and *y*.
gridsize : int or (int, int), default: 100
If a single int, the number of hexagons in the *x*-direction.
The number of hexagons in the *y*-direction is chosen such that
the hexagons are approximately regular.
Alternatively, if a tuple (*nx*, *ny*), the number of hexagons
in the *x*-direction and the *y*-direction.
bins : 'log' or int or sequence, default: None
Discretization of the hexagon values.
- If *None*, no binning is applied; the color of each hexagon
directly corresponds to its count value.
- If 'log', use a logarithmic scale for the color map.
Internally, :math:`log_{10}(i+1)` is used to determine the
hexagon color. This is equivalent to ``norm=LogNorm()``.
- If an integer, divide the counts in the specified number
of bins, and color the hexagons accordingly.
- If a sequence of values, the values of the lower bound of
the bins to be used.
xscale : {'linear', 'log'}, default: 'linear'
Use a linear or log10 scale on the horizontal axis.
yscale : {'linear', 'log'}, default: 'linear'
Use a linear or log10 scale on the vertical axis.
mincnt : int > 0, default: *None*
If not *None*, only display cells with more than *mincnt*
number of points in the cell.
marginals : bool, default: *False*
If marginals is *True*, plot the marginal density as
colormapped rectangles along the bottom of the x-axis and
left of the y-axis.
extent : float, default: *None*
The limits of the bins. The default assigns the limits
based on *gridsize*, *x*, *y*, *xscale* and *yscale*.
If *xscale* or *yscale* is set to 'log', the limits are
expected to be the exponent for a power of 10. E.g. for
x-limits of 1 and 50 in 'linear' scale and y-limits
of 10 and 1000 in 'log' scale, enter (1, 50, 1, 3).
Order of scalars is (left, right, bottom, top).
Returns
-------
`~matplotlib.collections.PolyCollection`
A `.PolyCollection` defining the hexagonal bins.
- `.PolyCollection.get_offsets` contains a Mx2 array containing
the x, y positions of the M hexagon centers.
- `.PolyCollection.get_array` contains the values of the M
hexagons.
If *marginals* is *True*, horizontal
bar and vertical bar (both PolyCollections) will be attached
to the return collection as attributes *hbar* and *vbar*.
Other Parameters
----------------
cmap : str or `~matplotlib.colors.Colormap`, default: :rc:`image.cmap`
The Colormap instance or registered colormap name used to map
the bin values to colors.
norm : `~matplotlib.colors.Normalize`, optional
The Normalize instance scales the bin values to the canonical
colormap range [0, 1] for mapping to colors. By default, the data
range is mapped to the colorbar range using linear scaling.
vmin, vmax : float, default: None
The colorbar range. If *None*, suitable min/max values are
automatically chosen by the `~.Normalize` instance (defaults to
the respective min/max values of the bins in case of the default
linear scaling).
It is deprecated to use *vmin*/*vmax* when *norm* is given.
alpha : float between 0 and 1, optional
The alpha blending value, between 0 (transparent) and 1 (opaque).
linewidths : float, default: *None*
If *None*, defaults to 1.0.
edgecolors : {'face', 'none', *None*} or color, default: 'face'
The color of the hexagon edges. Possible values are:
- 'face': Draw the edges in the same color as the fill color.
- 'none': No edges are drawn. This can sometimes lead to unsightly
unpainted pixels between the hexagons.
- *None*: Draw outlines in the default color.
- An explicit color.
reduce_C_function : callable, default: `numpy.mean`
The function to aggregate *C* within the bins. It is ignored if
*C* is not given. This must have the signature::
def reduce_C_function(C: array) -> float
Commonly used functions are:
- `numpy.mean`: average of the points
- `numpy.sum`: integral of the point values
- `numpy.max`: value taken from the largest point
**kwargs : `~matplotlib.collections.PolyCollection` properties
All other keyword arguments are passed on to `.PolyCollection`:
%(PolyCollection)s
"""
self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs)
x, y, C = cbook.delete_masked_points(x, y, C)
# Set the size of the hexagon grid
if np.iterable(gridsize):
nx, ny = gridsize
else:
nx = gridsize
ny = int(nx / math.sqrt(3))
# Count the number of data in each hexagon
x = np.array(x, float)
y = np.array(y, float)
if xscale == 'log':
if np.any(x <= 0.0):
raise ValueError("x contains non-positive values, so can not"
" be log-scaled")
x = np.log10(x)
if yscale == 'log':
if np.any(y <= 0.0):
raise ValueError("y contains non-positive values, so can not"
" be log-scaled")
y = np.log10(y)
if extent is not None:
xmin, xmax, ymin, ymax = extent
else:
xmin, xmax = (np.min(x), np.max(x)) if len(x) else (0, 1)
ymin, ymax = (np.min(y), np.max(y)) if len(y) else (0, 1)
# to avoid issues with singular data, expand the min/max pairs
xmin, xmax = mtransforms.nonsingular(xmin, xmax, expander=0.1)
ymin, ymax = mtransforms.nonsingular(ymin, ymax, expander=0.1)
# In the x-direction, the hexagons exactly cover the region from
# xmin to xmax. Need some padding to avoid roundoff errors.
padding = 1.e-9 * (xmax - xmin)
xmin -= padding
xmax += padding
sx = (xmax - xmin) / nx
sy = (ymax - ymin) / ny
if marginals:
xorig = x.copy()
yorig = y.copy()
x = (x - xmin) / sx
y = (y - ymin) / sy
ix1 = np.round(x).astype(int)
iy1 = np.round(y).astype(int)
ix2 = np.floor(x).astype(int)
iy2 = np.floor(y).astype(int)
nx1 = nx + 1
ny1 = ny + 1
nx2 = nx
ny2 = ny
n = nx1 * ny1 + nx2 * ny2
d1 = (x - ix1) ** 2 + 3.0 * (y - iy1) ** 2
d2 = (x - ix2 - 0.5) ** 2 + 3.0 * (y - iy2 - 0.5) ** 2
bdist = (d1 < d2)
if C is None:
lattice1 = np.zeros((nx1, ny1))
lattice2 = np.zeros((nx2, ny2))
c1 = (0 <= ix1) & (ix1 < nx1) & (0 <= iy1) & (iy1 < ny1) & bdist
c2 = (0 <= ix2) & (ix2 < nx2) & (0 <= iy2) & (iy2 < ny2) & ~bdist
np.add.at(lattice1, (ix1[c1], iy1[c1]), 1)
np.add.at(lattice2, (ix2[c2], iy2[c2]), 1)
if mincnt is not None:
lattice1[lattice1 < mincnt] = np.nan
lattice2[lattice2 < mincnt] = np.nan
accum = np.concatenate([lattice1.ravel(), lattice2.ravel()])
good_idxs = ~np.isnan(accum)
else:
if mincnt is None:
mincnt = 0
# create accumulation arrays
lattice1 = np.empty((nx1, ny1), dtype=object)
for i in range(nx1):
for j in range(ny1):
lattice1[i, j] = []
lattice2 = np.empty((nx2, ny2), dtype=object)
for i in range(nx2):
for j in range(ny2):
lattice2[i, j] = []
for i in range(len(x)):
if bdist[i]:
if 0 <= ix1[i] < nx1 and 0 <= iy1[i] < ny1:
lattice1[ix1[i], iy1[i]].append(C[i])
else:
if 0 <= ix2[i] < nx2 and 0 <= iy2[i] < ny2:
lattice2[ix2[i], iy2[i]].append(C[i])
for i in range(nx1):
for j in range(ny1):
vals = lattice1[i, j]
if len(vals) > mincnt:
lattice1[i, j] = reduce_C_function(vals)
else:
lattice1[i, j] = np.nan
for i in range(nx2):
for j in range(ny2):
vals = lattice2[i, j]
if len(vals) > mincnt:
lattice2[i, j] = reduce_C_function(vals)
else:
lattice2[i, j] = np.nan
accum = np.hstack((lattice1.astype(float).ravel(),
lattice2.astype(float).ravel()))
good_idxs = ~np.isnan(accum)
offsets = np.zeros((n, 2), float)
offsets[:nx1 * ny1, 0] = np.repeat(np.arange(nx1), ny1)
offsets[:nx1 * ny1, 1] = np.tile(np.arange(ny1), nx1)
offsets[nx1 * ny1:, 0] = np.repeat(np.arange(nx2) + 0.5, ny2)
offsets[nx1 * ny1:, 1] = np.tile(np.arange(ny2), nx2) + 0.5
offsets[:, 0] *= sx
offsets[:, 1] *= sy
offsets[:, 0] += xmin
offsets[:, 1] += ymin
# remove accumulation bins with no data
offsets = offsets[good_idxs, :]
accum = accum[good_idxs]
polygon = [sx, sy / 3] * np.array(
[[.5, -.5], [.5, .5], [0., 1.], [-.5, .5], [-.5, -.5], [0., -1.]])
if linewidths is None:
linewidths = [1.0]
if xscale == 'log' or yscale == 'log':
polygons = np.expand_dims(polygon, 0) + np.expand_dims(offsets, 1)
if xscale == 'log':
polygons[:, :, 0] = 10.0 ** polygons[:, :, 0]
xmin = 10.0 ** xmin
xmax = 10.0 ** xmax
self.set_xscale(xscale)
if yscale == 'log':
polygons[:, :, 1] = 10.0 ** polygons[:, :, 1]
ymin = 10.0 ** ymin
ymax = 10.0 ** ymax
self.set_yscale(yscale)
collection = mcoll.PolyCollection(
polygons,
edgecolors=edgecolors,
linewidths=linewidths,
)
else:
collection = mcoll.PolyCollection(
[polygon],
edgecolors=edgecolors,
linewidths=linewidths,
offsets=offsets,
transOffset=mtransforms.AffineDeltaTransform(self.transData),
)
# Set normalizer if bins is 'log'
if bins == 'log':
if norm is not None:
cbook._warn_external("Only one of 'bins' and 'norm' "
"arguments can be supplied, ignoring "
"bins={}".format(bins))
else:
norm = mcolors.LogNorm()
bins = None
if isinstance(norm, mcolors.LogNorm):
if (accum == 0).any():
# make sure we have no zeros
accum += 1
# autoscale the norm with curren accum values if it hasn't
# been set
if norm is not None:
if norm.vmin is None and norm.vmax is None:
norm.autoscale(accum)
if bins is not None:
if not np.iterable(bins):
minimum, maximum = min(accum), max(accum)
bins -= 1 # one less edge than bins
bins = minimum + (maximum - minimum) * np.arange(bins) / bins
bins = np.sort(bins)
accum = bins.searchsorted(accum)
collection.set_array(accum)
collection.set_cmap(cmap)
collection.set_norm(norm)
collection.set_alpha(alpha)
collection.update(kwargs)
collection._scale_norm(norm, vmin, vmax)
corners = ((xmin, ymin), (xmax, ymax))
self.update_datalim(corners)
self._request_autoscale_view(tight=True)
# add the collection last
self.add_collection(collection, autolim=False)
if not marginals:
return collection
if C is None:
C = np.ones(len(x))
def coarse_bin(x, y, coarse):
ind = coarse.searchsorted(x).clip(0, len(coarse) - 1)
mus = np.zeros(len(coarse))
for i in range(len(coarse)):
yi = y[ind == i]
if len(yi) > 0:
mu = reduce_C_function(yi)
else:
mu = np.nan
mus[i] = mu
return mus
coarse = np.linspace(xmin, xmax, gridsize)
xcoarse = coarse_bin(xorig, C, coarse)
valid = ~np.isnan(xcoarse)
verts, values = [], []
for i, val in enumerate(xcoarse):
thismin = coarse[i]
if i < len(coarse) - 1:
thismax = coarse[i + 1]
else:
thismax = thismin + np.diff(coarse)[-1]
if not valid[i]:
continue
verts.append([(thismin, 0),
(thismin, 0.05),
(thismax, 0.05),
(thismax, 0)])
values.append(val)
values = np.array(values)
trans = self.get_xaxis_transform(which='grid')
hbar = mcoll.PolyCollection(verts, transform=trans, edgecolors='face')
hbar.set_array(values)
hbar.set_cmap(cmap)
hbar.set_norm(norm)
hbar.set_alpha(alpha)
hbar.update(kwargs)
self.add_collection(hbar, autolim=False)
coarse = np.linspace(ymin, ymax, gridsize)
ycoarse = coarse_bin(yorig, C, coarse)
valid = ~np.isnan(ycoarse)
verts, values = [], []
for i, val in enumerate(ycoarse):
thismin = coarse[i]
if i < len(coarse) - 1:
thismax = coarse[i + 1]
else:
thismax = thismin + np.diff(coarse)[-1]
if not valid[i]:
continue
verts.append([(0, thismin), (0.0, thismax),
(0.05, thismax), (0.05, thismin)])
values.append(val)
values = np.array(values)
trans = self.get_yaxis_transform(which='grid')
vbar = mcoll.PolyCollection(verts, transform=trans, edgecolors='face')
vbar.set_array(values)
vbar.set_cmap(cmap)
vbar.set_norm(norm)
vbar.set_alpha(alpha)
vbar.update(kwargs)
self.add_collection(vbar, autolim=False)
collection.hbar = hbar
collection.vbar = vbar
def on_changed(collection):
hbar.set_cmap(collection.get_cmap())
hbar.set_clim(collection.get_clim())
vbar.set_cmap(collection.get_cmap())
vbar.set_clim(collection.get_clim())
collection.callbacksSM.connect('changed', on_changed)
return collection
@docstring.dedent_interpd
def arrow(self, x, y, dx, dy, **kwargs):
"""
Add an arrow to the axes.
This draws an arrow from ``(x, y)`` to ``(x+dx, y+dy)``.
Parameters
----------
x, y : float
The x and y coordinates of the arrow base.
dx, dy : float
The length of the arrow along x and y direction.
%(FancyArrow)s
Returns
-------
`.FancyArrow`
The created `.FancyArrow` object.
Notes
-----
The resulting arrow is affected by the axes aspect ratio and limits.
This may produce an arrow whose head is not square with its stem. To
create an arrow whose head is square with its stem,
use :meth:`annotate` for example:
>>> ax.annotate("", xy=(0.5, 0.5), xytext=(0, 0),
... arrowprops=dict(arrowstyle="->"))
"""
# Strip away units for the underlying patch since units
# do not make sense to most patch-like code
x = self.convert_xunits(x)
y = self.convert_yunits(y)
dx = self.convert_xunits(dx)
dy = self.convert_yunits(dy)
a = mpatches.FancyArrow(x, y, dx, dy, **kwargs)
self.add_patch(a)
self._request_autoscale_view()
return a
@docstring.copy(mquiver.QuiverKey.__init__)
def quiverkey(self, Q, X, Y, U, label, **kw):
qk = mquiver.QuiverKey(Q, X, Y, U, label, **kw)
self.add_artist(qk)
return qk
# Handle units for x and y, if they've been passed
def _quiver_units(self, args, kw):
if len(args) > 3:
x, y = args[0:2]
self._process_unit_info(xdata=x, ydata=y, kwargs=kw)
x = self.convert_xunits(x)
y = self.convert_yunits(y)
return (x, y) + args[2:]
return args
# args can by a combination if X, Y, U, V, C and all should be replaced
@_preprocess_data()
def quiver(self, *args, **kw):
# Make sure units are handled for x and y values
args = self._quiver_units(args, kw)
q = mquiver.Quiver(self, *args, **kw)
self.add_collection(q, autolim=True)
self._request_autoscale_view()
return q
quiver.__doc__ = mquiver.Quiver.quiver_doc
# args can be some combination of X, Y, U, V, C and all should be replaced
@_preprocess_data()
@docstring.dedent_interpd
def barbs(self, *args, **kw):
"""
%(barbs_doc)s
"""
# Make sure units are handled for x and y values
args = self._quiver_units(args, kw)
b = mquiver.Barbs(self, *args, **kw)
self.add_collection(b, autolim=True)
self._request_autoscale_view()
return b
# Uses a custom implementation of data-kwarg handling in
# _process_plot_var_args.
def fill(self, *args, data=None, **kwargs):
"""
Plot filled polygons.
Parameters
----------
*args : sequence of x, y, [color]
Each polygon is defined by the lists of *x* and *y* positions of
its nodes, optionally followed by a *color* specifier. See
:mod:`matplotlib.colors` for supported color specifiers. The
standard color cycle is used for polygons without a color
specifier.
You can plot multiple polygons by providing multiple *x*, *y*,
*[color]* groups.
For example, each of the following is legal::
ax.fill(x, y) # a polygon with default color
ax.fill(x, y, "b") # a blue polygon
ax.fill(x, y, x2, y2) # two polygons
ax.fill(x, y, "b", x2, y2, "r") # a blue and a red polygon
data : indexable object, optional
An object with labelled data. If given, provide the label names to
plot in *x* and *y*, e.g.::
ax.fill("time", "signal",
data={"time": [0, 1, 2], "signal": [0, 1, 0]})
Returns
-------
list of `~matplotlib.patches.Polygon`
Other Parameters
----------------
**kwargs : `~matplotlib.patches.Polygon` properties
Notes
-----
Use :meth:`fill_between` if you would like to fill the region between
two curves.
"""
# For compatibility(!), get aliases from Line2D rather than Patch.
kwargs = cbook.normalize_kwargs(kwargs, mlines.Line2D)
# _get_patches_for_fill returns a generator, convert it to a list.
patches = [*self._get_patches_for_fill(*args, data=data, **kwargs)]
for poly in patches:
self.add_patch(poly)
self._request_autoscale_view()
return patches
def _fill_between_x_or_y(
self, ind_dir, ind, dep1, dep2=0, *,
where=None, interpolate=False, step=None, **kwargs):
# Common implementation between fill_between (*ind_dir*="x") and
# fill_betweenx (*ind_dir*="y"). *ind* is the independent variable,
# *dep* the dependent variable. The docstring below is interpolated
# to generate both methods' docstrings.
"""
Fill the area between two {dir} curves.
The curves are defined by the points (*{ind}*, *{dep}1*) and (*{ind}*,
*{dep}2*). This creates one or multiple polygons describing the filled
area.
You may exclude some {dir} sections from filling using *where*.
By default, the edges connect the given points directly. Use *step*
if the filling should be a step function, i.e. constant in between
*{ind}*.
Parameters
----------
{ind} : array (length N)
The {ind} coordinates of the nodes defining the curves.
{dep}1 : array (length N) or scalar
The {dep} coordinates of the nodes defining the first curve.
{dep}2 : array (length N) or scalar, default: 0
The {dep} coordinates of the nodes defining the second curve.
where : array of bool (length N), optional
Define *where* to exclude some {dir} regions from being filled.
The filled regions are defined by the coordinates ``{ind}[where]``.
More precisely, fill between ``{ind}[i]`` and ``{ind}[i+1]`` if
``where[i] and where[i+1]``. Note that this definition implies
that an isolated *True* value between two *False* values in *where*
will not result in filling. Both sides of the *True* position
remain unfilled due to the adjacent *False* values.
interpolate : bool, default: False
This option is only relevant if *where* is used and the two curves
are crossing each other.
Semantically, *where* is often used for *{dep}1* > *{dep}2* or
similar. By default, the nodes of the polygon defining the filled
region will only be placed at the positions in the *{ind}* array.
Such a polygon cannot describe the above semantics close to the
intersection. The {ind}-sections containing the intersection are
simply clipped.
Setting *interpolate* to *True* will calculate the actual
intersection point and extend the filled region up to this point.
step : {{'pre', 'post', 'mid'}}, optional
Define *step* if the filling should be a step function,
i.e. constant in between *{ind}*. The value determines where the
step will occur:
- 'pre': The y value is continued constantly to the left from
every *x* position, i.e. the interval ``(x[i-1], x[i]]`` has the
value ``y[i]``.
- 'post': The y value is continued constantly to the right from
every *x* position, i.e. the interval ``[x[i], x[i+1])`` has the
value ``y[i]``.
- 'mid': Steps occur half-way between the *x* positions.
Returns
-------
`.PolyCollection`
A `.PolyCollection` containing the plotted polygons.
Other Parameters
----------------
**kwargs
All other keyword arguments are passed on to `.PolyCollection`.
They control the `.Polygon` properties:
%(PolyCollection)s
See Also
--------
fill_between : Fill between two sets of y-values.
fill_betweenx : Fill between two sets of x-values.
Notes
-----
.. [notes section required to get data note injection right]
"""
dep_dir = {"x": "y", "y": "x"}[ind_dir]
func_name = {"x": "fill_between", "y": "fill_betweenx"}[dep_dir]
if not rcParams["_internal.classic_mode"]:
kwargs = cbook.normalize_kwargs(kwargs, mcoll.Collection)
if not any(c in kwargs for c in ("color", "facecolor")):
kwargs["facecolor"] = \
self._get_patches_for_fill.get_next_color()
# Handle united data, such as dates
self._process_unit_info(
**{f"{ind_dir}data": ind, f"{dep_dir}data": dep1}, kwargs=kwargs)
self._process_unit_info(
**{f"{dep_dir}data": dep2})
# Convert the arrays so we can work with them
ind = ma.masked_invalid(getattr(self, f"convert_{ind_dir}units")(ind))
dep1 = ma.masked_invalid(
getattr(self, f"convert_{dep_dir}units")(dep1))
dep2 = ma.masked_invalid(
getattr(self, f"convert_{dep_dir}units")(dep2))
for name, array in [
(ind_dir, ind), (f"{dep_dir}1", dep1), (f"{dep_dir}2", dep2)]:
if array.ndim > 1:
raise ValueError(f"{name!r} is not 1-dimensional")
if where is None:
where = True
else:
where = np.asarray(where, dtype=bool)
if where.size != ind.size:
cbook.warn_deprecated(
"3.2", message=f"Since %(since)s, the parameter *where* "
f"must have the same size as {ind} in {func_name}(). This "
"will become an error %(removal)s.")
where = where & ~functools.reduce(
np.logical_or, map(np.ma.getmask, [ind, dep1, dep2]))
ind, dep1, dep2 = np.broadcast_arrays(np.atleast_1d(ind), dep1, dep2)
polys = []
for idx0, idx1 in cbook.contiguous_regions(where):
indslice = ind[idx0:idx1]
dep1slice = dep1[idx0:idx1]
dep2slice = dep2[idx0:idx1]
if step is not None:
step_func = cbook.STEP_LOOKUP_MAP["steps-" + step]
indslice, dep1slice, dep2slice = \
step_func(indslice, dep1slice, dep2slice)
if not len(indslice):
continue
N = len(indslice)
pts = np.zeros((2 * N + 2, 2))
if interpolate:
def get_interp_point(idx):
im1 = max(idx - 1, 0)
ind_values = ind[im1:idx+1]
diff_values = dep1[im1:idx+1] - dep2[im1:idx+1]
dep1_values = dep1[im1:idx+1]
if len(diff_values) == 2:
if np.ma.is_masked(diff_values[1]):
return ind[im1], dep1[im1]
elif np.ma.is_masked(diff_values[0]):
return ind[idx], dep1[idx]
diff_order = diff_values.argsort()
diff_root_ind = np.interp(
0, diff_values[diff_order], ind_values[diff_order])
ind_order = ind_values.argsort()
diff_root_dep = np.interp(
diff_root_ind,
ind_values[ind_order], dep1_values[ind_order])
return diff_root_ind, diff_root_dep
start = get_interp_point(idx0)
end = get_interp_point(idx1)
else:
# Handle scalar dep2 (e.g. 0): the fill should go all
# the way down to 0 even if none of the dep1 sample points do.
start = indslice[0], dep2slice[0]
end = indslice[-1], dep2slice[-1]
pts[0] = start
pts[N + 1] = end
pts[1:N+1, 0] = indslice
pts[1:N+1, 1] = dep1slice
pts[N+2:, 0] = indslice[::-1]
pts[N+2:, 1] = dep2slice[::-1]
if ind_dir == "y":
pts = pts[:, ::-1]
polys.append(pts)
collection = mcoll.PolyCollection(polys, **kwargs)
# now update the datalim and autoscale
pts = np.row_stack([np.column_stack([ind[where], dep1[where]]),
np.column_stack([ind[where], dep2[where]])])
if ind_dir == "y":
pts = pts[:, ::-1]
self.update_datalim(pts, updatex=True, updatey=True)
self.add_collection(collection, autolim=False)
self._request_autoscale_view()
return collection
def fill_between(self, x, y1, y2=0, where=None, interpolate=False,
step=None, **kwargs):
return self._fill_between_x_or_y(
"x", x, y1, y2,
where=where, interpolate=interpolate, step=step, **kwargs)
if _fill_between_x_or_y.__doc__:
fill_between.__doc__ = _fill_between_x_or_y.__doc__.format(
dir="horizontal", ind="x", dep="y"
)
fill_between = _preprocess_data(
docstring.dedent_interpd(fill_between),
replace_names=["x", "y1", "y2", "where"])
def fill_betweenx(self, y, x1, x2=0, where=None,
step=None, interpolate=False, **kwargs):
return self._fill_between_x_or_y(
"y", y, x1, x2,
where=where, interpolate=interpolate, step=step, **kwargs)
if _fill_between_x_or_y.__doc__:
fill_betweenx.__doc__ = _fill_between_x_or_y.__doc__.format(
dir="vertical", ind="y", dep="x"
)
fill_betweenx = _preprocess_data(
docstring.dedent_interpd(fill_betweenx),
replace_names=["y", "x1", "x2", "where"])
#### plotting z(x, y): imshow, pcolor and relatives, contour
@_preprocess_data()
def imshow(self, X, cmap=None, norm=None, aspect=None,
interpolation=None, alpha=None, vmin=None, vmax=None,
origin=None, extent=None, *, filternorm=True, filterrad=4.0,
resample=None, url=None, **kwargs):
"""
Display data as an image, i.e., on a 2D regular raster.
The input may either be actual RGB(A) data, or 2D scalar data, which
will be rendered as a pseudocolor image. For displaying a grayscale
image set up the color mapping using the parameters
``cmap='gray', vmin=0, vmax=255``.
The number of pixels used to render an image is set by the axes size
and the *dpi* of the figure. This can lead to aliasing artifacts when
the image is resampled because the displayed image size will usually
not match the size of *X* (see
:doc:`/gallery/images_contours_and_fields/image_antialiasing`).
The resampling can be controlled via the *interpolation* parameter
and/or :rc:`image.interpolation`.
Parameters
----------
X : array-like or PIL image
The image data. Supported array shapes are:
- (M, N): an image with scalar data. The values are mapped to
colors using normalization and a colormap. See parameters *norm*,
*cmap*, *vmin*, *vmax*.
- (M, N, 3): an image with RGB values (0-1 float or 0-255 int).
- (M, N, 4): an image with RGBA values (0-1 float or 0-255 int),
i.e. including transparency.
The first two dimensions (M, N) define the rows and columns of
the image.
Out-of-range RGB(A) values are clipped.
cmap : str or `~matplotlib.colors.Colormap`, default: :rc:`image.cmap`
The Colormap instance or registered colormap name used to map
scalar data to colors. This parameter is ignored for RGB(A) data.
norm : `~matplotlib.colors.Normalize`, optional
The `.Normalize` instance used to scale scalar data to the [0, 1]
range before mapping to colors using *cmap*. By default, a linear
scaling mapping the lowest value to 0 and the highest to 1 is used.
This parameter is ignored for RGB(A) data.
aspect : {'equal', 'auto'} or float, default: :rc:`image.aspect`
The aspect ratio of the axes. This parameter is particularly
relevant for images since it determines whether data pixels are
square.
This parameter is a shortcut for explicitly calling
`.Axes.set_aspect`. See there for further details.
- 'equal': Ensures an aspect ratio of 1. Pixels will be square
(unless pixel sizes are explicitly made non-square in data
coordinates using *extent*).
- 'auto': The axes is kept fixed and the aspect is adjusted so
that the data fit in the axes. In general, this will result in
non-square pixels.
interpolation : str, default: :rc:`image.interpolation`
The interpolation method used.
Supported values are 'none', 'antialiased', 'nearest', 'bilinear',
'bicubic', 'spline16', 'spline36', 'hanning', 'hamming', 'hermite',
'kaiser', 'quadric', 'catrom', 'gaussian', 'bessel', 'mitchell',
'sinc', 'lanczos'.
If *interpolation* is 'none', then no interpolation is performed
on the Agg, ps, pdf and svg backends. Other backends will fall back
to 'nearest'. Note that most SVG renderers perform interpolation at
rendering and that the default interpolation method they implement
may differ.
If *interpolation* is the default 'antialiased', then 'nearest'
interpolation is used if the image is upsampled by more than a
factor of three (i.e. the number of display pixels is at least
three times the size of the data array). If the upsampling rate is
smaller than 3, or the image is downsampled, then 'hanning'
interpolation is used to act as an anti-aliasing filter, unless the
image happens to be upsampled by exactly a factor of two or one.
See
:doc:`/gallery/images_contours_and_fields/interpolation_methods`
for an overview of the supported interpolation methods, and
:doc:`/gallery/images_contours_and_fields/image_antialiasing` for
a discussion of image antialiasing.
Some interpolation methods require an additional radius parameter,
which can be set by *filterrad*. Additionally, the antigrain image
resize filter is controlled by the parameter *filternorm*.
alpha : float or array-like, optional
The alpha blending value, between 0 (transparent) and 1 (opaque).
If *alpha* is an array, the alpha blending values are applied pixel
by pixel, and *alpha* must have the same shape as *X*.
vmin, vmax : float, optional
When using scalar data and no explicit *norm*, *vmin* and *vmax*
define the data range that the colormap covers. By default,
the colormap covers the complete value range of the supplied
data. It is deprecated to use *vmin*/*vmax* when *norm* is given.
origin : {'upper', 'lower'}, default: :rc:`image.origin`
Place the [0, 0] index of the array in the upper left or lower
left corner of the axes. The convention (the default) 'upper' is
typically used for matrices and images.
Note that the vertical axes points upward for 'lower'
but downward for 'upper'.
See the :doc:`/tutorials/intermediate/imshow_extent` tutorial for
examples and a more detailed description.
extent : floats (left, right, bottom, top), optional
The bounding box in data coordinates that the image will fill.
The image is stretched individually along x and y to fill the box.
The default extent is determined by the following conditions.
Pixels have unit size in data coordinates. Their centers are on
integer coordinates, and their center coordinates range from 0 to
columns-1 horizontally and from 0 to rows-1 vertically.
Note that the direction of the vertical axis and thus the default
values for top and bottom depend on *origin*:
- For ``origin == 'upper'`` the default is
``(-0.5, numcols-0.5, numrows-0.5, -0.5)``.
- For ``origin == 'lower'`` the default is
``(-0.5, numcols-0.5, -0.5, numrows-0.5)``.
See the :doc:`/tutorials/intermediate/imshow_extent` tutorial for
examples and a more detailed description.
filternorm : bool, default: True
A parameter for the antigrain image resize filter (see the
antigrain documentation). If *filternorm* is set, the filter
normalizes integer values and corrects the rounding errors. It
doesn't do anything with the source floating point values, it
corrects only integers according to the rule of 1.0 which means
that any sum of pixel weights must be equal to 1.0. So, the
filter function must produce a graph of the proper shape.
filterrad : float > 0, default: 4.0
The filter radius for filters that have a radius parameter, i.e.
when interpolation is one of: 'sinc', 'lanczos' or 'blackman'.
resample : bool, default: :rc:`image.resample`
When *True*, use a full resampling method. When *False*, only
resample when the output image is larger than the input image.
url : str, optional
Set the url of the created `.AxesImage`. See `.Artist.set_url`.
Returns
-------
`~matplotlib.image.AxesImage`
Other Parameters
----------------
**kwargs : `~matplotlib.artist.Artist` properties
These parameters are passed on to the constructor of the
`.AxesImage` artist.
See Also
--------
matshow : Plot a matrix or an array as an image.
Notes
-----
Unless *extent* is used, pixel centers will be located at integer
coordinates. In other words: the origin will coincide with the center
of pixel (0, 0).
There are two common representations for RGB images with an alpha
channel:
- Straight (unassociated) alpha: R, G, and B channels represent the
color of the pixel, disregarding its opacity.
- Premultiplied (associated) alpha: R, G, and B channels represent
the color of the pixel, adjusted for its opacity by multiplication.
`~matplotlib.pyplot.imshow` expects RGB images adopting the straight
(unassociated) alpha representation.
"""
if aspect is None:
aspect = rcParams['image.aspect']
self.set_aspect(aspect)
im = mimage.AxesImage(self, cmap, norm, interpolation, origin, extent,
filternorm=filternorm, filterrad=filterrad,
resample=resample, **kwargs)
im.set_data(X)
im.set_alpha(alpha)
if im.get_clip_path() is None:
# image does not already have clipping set, clip to axes patch
im.set_clip_path(self.patch)
im._scale_norm(norm, vmin, vmax)
im.set_url(url)
# update ax.dataLim, and, if autoscaling, set viewLim
# to tightly fit the image, regardless of dataLim.
im.set_extent(im.get_extent())
self.add_image(im)
return im
def _pcolorargs(self, funcname, *args, shading='flat', **kwargs):
# - create X and Y if not present;
# - reshape X and Y as needed if they are 1-D;
# - check for proper sizes based on `shading` kwarg;
# - reset shading if shading='auto' to flat or nearest
# depending on size;
_valid_shading = ['gouraud', 'nearest', 'flat', 'auto']
try:
cbook._check_in_list(_valid_shading, shading=shading)
except ValueError as err:
cbook._warn_external(f"shading value '{shading}' not in list of "
f"valid values {_valid_shading}. Setting "
"shading='auto'.")
shading = 'auto'
if len(args) == 1:
C = np.asanyarray(args[0])
nrows, ncols = C.shape
if shading in ['gouraud', 'nearest']:
X, Y = np.meshgrid(np.arange(ncols), np.arange(nrows))
else:
X, Y = np.meshgrid(np.arange(ncols + 1), np.arange(nrows + 1))
shading = 'flat'
C = cbook.safe_masked_invalid(C)
return X, Y, C, shading
if len(args) == 3:
# Check x and y for bad data...
C = np.asanyarray(args[2])
X, Y = [cbook.safe_masked_invalid(a) for a in args[:2]]
# unit conversion allows e.g. datetime objects as axis values
self._process_unit_info(xdata=X, ydata=Y, kwargs=kwargs)
X = self.convert_xunits(X)
Y = self.convert_yunits(Y)
if funcname == 'pcolormesh':
if np.ma.is_masked(X) or np.ma.is_masked(Y):
raise ValueError(
'x and y arguments to pcolormesh cannot have '
'non-finite values or be of type '
'numpy.ma.core.MaskedArray with masked values')
# safe_masked_invalid() returns an ndarray for dtypes other
# than floating point.
if isinstance(X, np.ma.core.MaskedArray):
X = X.data # strip mask as downstream doesn't like it...
if isinstance(Y, np.ma.core.MaskedArray):
Y = Y.data
nrows, ncols = C.shape
else:
raise TypeError(f'{funcname}() takes 1 or 3 positional arguments '
f'but {len(args)} were given')
Nx = X.shape[-1]
Ny = Y.shape[0]
if X.ndim != 2 or X.shape[0] == 1:
x = X.reshape(1, Nx)
X = x.repeat(Ny, axis=0)
if Y.ndim != 2 or Y.shape[1] == 1:
y = Y.reshape(Ny, 1)
Y = y.repeat(Nx, axis=1)
if X.shape != Y.shape:
raise TypeError(
'Incompatible X, Y inputs to %s; see help(%s)' % (
funcname, funcname))
if shading == 'auto':
if ncols == Nx and nrows == Ny:
shading = 'nearest'
else:
shading = 'flat'
if shading == 'flat':
if not (ncols in (Nx, Nx - 1) and nrows in (Ny, Ny - 1)):
raise TypeError('Dimensions of C %s are incompatible with'
' X (%d) and/or Y (%d); see help(%s)' % (
C.shape, Nx, Ny, funcname))
if (ncols == Nx or nrows == Ny):
cbook.warn_deprecated(
"3.3", message="shading='flat' when X and Y have the same "
"dimensions as C is deprecated since %(since)s. Either "
"specify the corners of the quadrilaterals with X and Y, "
"or pass shading='auto', 'nearest' or 'gouraud', or set "
"rcParams['pcolor.shading']. This will become an error "
"%(removal)s.")
C = C[:Ny - 1, :Nx - 1]
else: # ['nearest', 'gouraud']:
if (Nx, Ny) != (ncols, nrows):
raise TypeError('Dimensions of C %s are incompatible with'
' X (%d) and/or Y (%d); see help(%s)' % (
C.shape, Nx, Ny, funcname))
if shading in ['nearest', 'auto']:
# grid is specified at the center, so define corners
# at the midpoints between the grid centers and then use the
# flat algorithm.
def _interp_grid(X):
# helper for below
if np.shape(X)[1] > 1:
dX = np.diff(X, axis=1)/2.
if not (np.all(dX >= 0) or np.all(dX <= 0)):
cbook._warn_external(
f"The input coordinates to {funcname} are "
"interpreted as cell centers, but are not "
"monotonically increasing or decreasing. "
"This may lead to incorrectly calculated cell "
"edges, in which case, please supply "
f"explicit cell edges to {funcname}.")
X = np.hstack((X[:, [0]] - dX[:, [0]],
X[:, :-1] + dX,
X[:, [-1]] + dX[:, [-1]]))
else:
# This is just degenerate, but we can't reliably guess
# a dX if there is just one value.
X = np.hstack((X, X))
return X
if ncols == Nx:
X = _interp_grid(X)
Y = _interp_grid(Y)
if nrows == Ny:
X = _interp_grid(X.T).T
Y = _interp_grid(Y.T).T
shading = 'flat'
C = cbook.safe_masked_invalid(C)
return X, Y, C, shading
@_preprocess_data()
@docstring.dedent_interpd
def pcolor(self, *args, shading=None, alpha=None, norm=None, cmap=None,
vmin=None, vmax=None, **kwargs):
r"""
Create a pseudocolor plot with a non-regular rectangular grid.
Call signature::
pcolor([X, Y,] C, **kwargs)
*X* and *Y* can be used to specify the corners of the quadrilaterals.
.. hint::
``pcolor()`` can be very slow for large arrays. In most
cases you should use the similar but much faster
`~.Axes.pcolormesh` instead. See
:ref:`Differences between pcolor() and pcolormesh()
<differences-pcolor-pcolormesh>` for a discussion of the
differences.
Parameters
----------
C : array-like
A scalar 2-D array. The values will be color-mapped.
X, Y : array-like, optional
The coordinates of the corners of quadrilaterals of a pcolormesh::
(X[i+1, j], Y[i+1, j]) (X[i+1, j+1], Y[i+1, j+1])
+-----+
| |
+-----+
(X[i, j], Y[i, j]) (X[i, j+1], Y[i, j+1])
Note that the column index corresponds to the x-coordinate, and
the row index corresponds to y. For details, see the
:ref:`Notes <axes-pcolormesh-grid-orientation>` section below.
If ``shading='flat'`` the dimensions of *X* and *Y* should be one
greater than those of *C*, and the quadrilateral is colored due
to the value at ``C[i, j]``. If *X*, *Y* and *C* have equal
dimensions, a warning will be raised and the last row and column
of *C* will be ignored.
If ``shading='nearest'``, the dimensions of *X* and *Y* should be
the same as those of *C* (if not, a ValueError will be raised). The
color ``C[i, j]`` will be centered on ``(X[i, j], Y[i, j])``.
If *X* and/or *Y* are 1-D arrays or column vectors they will be
expanded as needed into the appropriate 2-D arrays, making a
rectangular grid.
shading : {'flat', 'nearest', 'auto'}, optional
The fill style for the quadrilateral; defaults to 'flat' or
:rc:`pcolor.shading`. Possible values:
- 'flat': A solid color is used for each quad. The color of the
quad (i, j), (i+1, j), (i, j+1), (i+1, j+1) is given by
``C[i, j]``. The dimensions of *X* and *Y* should be
one greater than those of *C*; if they are the same as *C*,
then a deprecation warning is raised, and the last row
and column of *C* are dropped.
- 'nearest': Each grid point will have a color centered on it,
extending halfway between the adjacent grid centers. The
dimensions of *X* and *Y* must be the same as *C*.
- 'auto': Choose 'flat' if dimensions of *X* and *Y* are one
larger than *C*. Choose 'nearest' if dimensions are the same.
See :doc:`/gallery/images_contours_and_fields/pcolormesh_grids`
for more description.
cmap : str or `~matplotlib.colors.Colormap`, default: :rc:`image.cmap`
A Colormap instance or registered colormap name. The colormap
maps the *C* values to colors.
norm : `~matplotlib.colors.Normalize`, optional
The Normalize instance scales the data values to the canonical
colormap range [0, 1] for mapping to colors. By default, the data
range is mapped to the colorbar range using linear scaling.
vmin, vmax : float, default: None
The colorbar range. If *None*, suitable min/max values are
automatically chosen by the `~.Normalize` instance (defaults to
the respective min/max values of *C* in case of the default linear
scaling).
It is deprecated to use *vmin*/*vmax* when *norm* is given.
edgecolors : {'none', None, 'face', color, color sequence}, optional
The color of the edges. Defaults to 'none'. Possible values:
- 'none' or '': No edge.
- *None*: :rc:`patch.edgecolor` will be used. Note that currently
:rc:`patch.force_edgecolor` has to be True for this to work.
- 'face': Use the adjacent face color.
- A color or sequence of colors will set the edge color.
The singular form *edgecolor* works as an alias.
alpha : float, default: None
The alpha blending value of the face color, between 0 (transparent)
and 1 (opaque). Note: The edgecolor is currently not affected by
this.
snap : bool, default: False
Whether to snap the mesh to pixel boundaries.
Returns
-------
`matplotlib.collections.Collection`
Other Parameters
----------------
antialiaseds : bool, default: False
The default *antialiaseds* is False if the default
*edgecolors*\ ="none" is used. This eliminates artificial lines
at patch boundaries, and works regardless of the value of alpha.
If *edgecolors* is not "none", then the default *antialiaseds*
is taken from :rc:`patch.antialiased`.
Stroking the edges may be preferred if *alpha* is 1, but will
cause artifacts otherwise.
**kwargs
Additionally, the following arguments are allowed. They are passed
along to the `~matplotlib.collections.PolyCollection` constructor:
%(PolyCollection)s
See Also
--------
pcolormesh : for an explanation of the differences between
pcolor and pcolormesh.
imshow : If *X* and *Y* are each equidistant, `~.Axes.imshow` can be a
faster alternative.
Notes
-----
**Masked arrays**
*X*, *Y* and *C* may be masked arrays. If either ``C[i, j]``, or one
of the vertices surrounding ``C[i, j]`` (*X* or *Y* at
``[i, j], [i+1, j], [i, j+1], [i+1, j+1]``) is masked, nothing is
plotted.
.. _axes-pcolor-grid-orientation:
**Grid orientation**
The grid orientation follows the standard matrix convention: An array
*C* with shape (nrows, ncolumns) is plotted with the column number as
*X* and the row number as *Y*.
"""
if shading is None:
shading = rcParams['pcolor.shading']
shading = shading.lower()
X, Y, C, shading = self._pcolorargs('pcolor', *args, shading=shading,
kwargs=kwargs)
Ny, Nx = X.shape
# convert to MA, if necessary.
C = ma.asarray(C)
X = ma.asarray(X)
Y = ma.asarray(Y)
mask = ma.getmaskarray(X) + ma.getmaskarray(Y)
xymask = (mask[0:-1, 0:-1] + mask[1:, 1:] +
mask[0:-1, 1:] + mask[1:, 0:-1])
# don't plot if C or any of the surrounding vertices are masked.
mask = ma.getmaskarray(C) + xymask
unmask = ~mask
X1 = ma.filled(X[:-1, :-1])[unmask]
Y1 = ma.filled(Y[:-1, :-1])[unmask]
X2 = ma.filled(X[1:, :-1])[unmask]
Y2 = ma.filled(Y[1:, :-1])[unmask]
X3 = ma.filled(X[1:, 1:])[unmask]
Y3 = ma.filled(Y[1:, 1:])[unmask]
X4 = ma.filled(X[:-1, 1:])[unmask]
Y4 = ma.filled(Y[:-1, 1:])[unmask]
npoly = len(X1)
xy = np.stack([X1, Y1, X2, Y2, X3, Y3, X4, Y4, X1, Y1], axis=-1)
verts = xy.reshape((npoly, 5, 2))
C = ma.filled(C[:Ny - 1, :Nx - 1])[unmask]
linewidths = (0.25,)
if 'linewidth' in kwargs:
kwargs['linewidths'] = kwargs.pop('linewidth')
kwargs.setdefault('linewidths', linewidths)
if 'edgecolor' in kwargs:
kwargs['edgecolors'] = kwargs.pop('edgecolor')
ec = kwargs.setdefault('edgecolors', 'none')
# aa setting will default via collections to patch.antialiased
# unless the boundary is not stroked, in which case the
# default will be False; with unstroked boundaries, aa
# makes artifacts that are often disturbing.
if 'antialiased' in kwargs:
kwargs['antialiaseds'] = kwargs.pop('antialiased')
if 'antialiaseds' not in kwargs and cbook._str_lower_equal(ec, "none"):
kwargs['antialiaseds'] = False
kwargs.setdefault('snap', False)
collection = mcoll.PolyCollection(verts, **kwargs)
collection.set_alpha(alpha)
collection.set_array(C)
collection.set_cmap(cmap)
collection.set_norm(norm)
collection._scale_norm(norm, vmin, vmax)
self.grid(False)
x = X.compressed()
y = Y.compressed()
# Transform from native to data coordinates?
t = collection._transform
if (not isinstance(t, mtransforms.Transform) and
hasattr(t, '_as_mpl_transform')):
t = t._as_mpl_transform(self.axes)
if t and any(t.contains_branch_seperately(self.transData)):
trans_to_data = t - self.transData
pts = np.vstack([x, y]).T.astype(float)
transformed_pts = trans_to_data.transform(pts)
x = transformed_pts[..., 0]
y = transformed_pts[..., 1]
self.add_collection(collection, autolim=False)
minx = np.min(x)
maxx = np.max(x)
miny = np.min(y)
maxy = np.max(y)
collection.sticky_edges.x[:] = [minx, maxx]
collection.sticky_edges.y[:] = [miny, maxy]
corners = (minx, miny), (maxx, maxy)
self.update_datalim(corners)
self._request_autoscale_view()
return collection
@_preprocess_data()
@docstring.dedent_interpd
def pcolormesh(self, *args, alpha=None, norm=None, cmap=None, vmin=None,
vmax=None, shading=None, antialiased=False, **kwargs):
"""
Create a pseudocolor plot with a non-regular rectangular grid.
Call signature::
pcolormesh([X, Y,] C, **kwargs)
*X* and *Y* can be used to specify the corners of the quadrilaterals.
.. hint::
`~.Axes.pcolormesh` is similar to `~.Axes.pcolor`. It is much faster
and preferred in most cases. For a detailed discussion on the
differences see :ref:`Differences between pcolor() and pcolormesh()
<differences-pcolor-pcolormesh>`.
Parameters
----------
C : array-like
A scalar 2-D array. The values will be color-mapped.
X, Y : array-like, optional
The coordinates of the corners of quadrilaterals of a pcolormesh::
(X[i+1, j], Y[i+1, j]) (X[i+1, j+1], Y[i+1, j+1])
+-----+
| |
+-----+
(X[i, j], Y[i, j]) (X[i, j+1], Y[i, j+1])
Note that the column index corresponds to the x-coordinate, and
the row index corresponds to y. For details, see the
:ref:`Notes <axes-pcolormesh-grid-orientation>` section below.
If ``shading='flat'`` the dimensions of *X* and *Y* should be one
greater than those of *C*, and the quadrilateral is colored due
to the value at ``C[i, j]``. If *X*, *Y* and *C* have equal
dimensions, a warning will be raised and the last row and column
of *C* will be ignored.
If ``shading='nearest'`` or ``'gouraud'``, the dimensions of *X*
and *Y* should be the same as those of *C* (if not, a ValueError
will be raised). For ``'nearest'`` the color ``C[i, j]`` is
centered on ``(X[i, j], Y[i, j])``. For ``'gouraud'``, a smooth
interpolation is caried out between the quadrilateral corners.
If *X* and/or *Y* are 1-D arrays or column vectors they will be
expanded as needed into the appropriate 2-D arrays, making a
rectangular grid.
cmap : str or `~matplotlib.colors.Colormap`, default: :rc:`image.cmap`
A Colormap instance or registered colormap name. The colormap
maps the *C* values to colors.
norm : `~matplotlib.colors.Normalize`, optional
The Normalize instance scales the data values to the canonical
colormap range [0, 1] for mapping to colors. By default, the data
range is mapped to the colorbar range using linear scaling.
vmin, vmax : float, default: None
The colorbar range. If *None*, suitable min/max values are
automatically chosen by the `~.Normalize` instance (defaults to
the respective min/max values of *C* in case of the default linear
scaling).
It is deprecated to use *vmin*/*vmax* when *norm* is given.
edgecolors : {'none', None, 'face', color, color sequence}, optional
The color of the edges. Defaults to 'none'. Possible values:
- 'none' or '': No edge.
- *None*: :rc:`patch.edgecolor` will be used. Note that currently
:rc:`patch.force_edgecolor` has to be True for this to work.
- 'face': Use the adjacent face color.
- A color or sequence of colors will set the edge color.
The singular form *edgecolor* works as an alias.
alpha : float, default: None
The alpha blending value, between 0 (transparent) and 1 (opaque).
shading : {'flat', 'nearest', 'gouraud', 'auto'}, optional
The fill style for the quadrilateral; defaults to
'flat' or :rc:`pcolor.shading`. Possible values:
- 'flat': A solid color is used for each quad. The color of the
quad (i, j), (i+1, j), (i, j+1), (i+1, j+1) is given by
``C[i, j]``. The dimensions of *X* and *Y* should be
one greater than those of *C*; if they are the same as *C*,
then a deprecation warning is raised, and the last row
and column of *C* are dropped.
- 'nearest': Each grid point will have a color centered on it,
extending halfway between the adjacent grid centers. The
dimensions of *X* and *Y* must be the same as *C*.
- 'gouraud': Each quad will be Gouraud shaded: The color of the
corners (i', j') are given by ``C[i', j']``. The color values of
the area in between is interpolated from the corner values.
The dimensions of *X* and *Y* must be the same as *C*. When
Gouraud shading is used, *edgecolors* is ignored.
- 'auto': Choose 'flat' if dimensions of *X* and *Y* are one
larger than *C*. Choose 'nearest' if dimensions are the same.
See :doc:`/gallery/images_contours_and_fields/pcolormesh_grids`
for more description.
snap : bool, default: False
Whether to snap the mesh to pixel boundaries.
Returns
-------
`matplotlib.collections.QuadMesh`
Other Parameters
----------------
**kwargs
Additionally, the following arguments are allowed. They are passed
along to the `~matplotlib.collections.QuadMesh` constructor:
%(QuadMesh)s
See Also
--------
pcolor : An alternative implementation with slightly different
features. For a detailed discussion on the differences see
:ref:`Differences between pcolor() and pcolormesh()
<differences-pcolor-pcolormesh>`.
imshow : If *X* and *Y* are each equidistant, `~.Axes.imshow` can be a
faster alternative.
Notes
-----
**Masked arrays**
*C* may be a masked array. If ``C[i, j]`` is masked, the corresponding
quadrilateral will be transparent. Masking of *X* and *Y* is not
supported. Use `~.Axes.pcolor` if you need this functionality.
.. _axes-pcolormesh-grid-orientation:
**Grid orientation**
The grid orientation follows the standard matrix convention: An array
*C* with shape (nrows, ncolumns) is plotted with the column number as
*X* and the row number as *Y*.
.. _differences-pcolor-pcolormesh:
**Differences between pcolor() and pcolormesh()**
Both methods are used to create a pseudocolor plot of a 2-D array
using quadrilaterals.
The main difference lies in the created object and internal data
handling:
While `~.Axes.pcolor` returns a `.PolyCollection`, `~.Axes.pcolormesh`
returns a `.QuadMesh`. The latter is more specialized for the given
purpose and thus is faster. It should almost always be preferred.
There is also a slight difference in the handling of masked arrays.
Both `~.Axes.pcolor` and `~.Axes.pcolormesh` support masked arrays
for *C*. However, only `~.Axes.pcolor` supports masked arrays for *X*
and *Y*. The reason lies in the internal handling of the masked values.
`~.Axes.pcolor` leaves out the respective polygons from the
PolyCollection. `~.Axes.pcolormesh` sets the facecolor of the masked
elements to transparent. You can see the difference when using
edgecolors. While all edges are drawn irrespective of masking in a
QuadMesh, the edge between two adjacent masked quadrilaterals in
`~.Axes.pcolor` is not drawn as the corresponding polygons do not
exist in the PolyCollection.
Another difference is the support of Gouraud shading in
`~.Axes.pcolormesh`, which is not available with `~.Axes.pcolor`.
"""
if shading is None:
shading = rcParams['pcolor.shading']
shading = shading.lower()
kwargs.setdefault('edgecolors', 'None')
X, Y, C, shading = self._pcolorargs('pcolormesh', *args,
shading=shading, kwargs=kwargs)
Ny, Nx = X.shape
X = X.ravel()
Y = Y.ravel()
# convert to one dimensional arrays
C = C.ravel()
coords = np.column_stack((X, Y)).astype(float, copy=False)
collection = mcoll.QuadMesh(Nx - 1, Ny - 1, coords,
antialiased=antialiased, shading=shading,
**kwargs)
collection.set_alpha(alpha)
collection.set_array(C)
collection.set_cmap(cmap)
collection.set_norm(norm)
collection._scale_norm(norm, vmin, vmax)
self.grid(False)
# Transform from native to data coordinates?
t = collection._transform
if (not isinstance(t, mtransforms.Transform) and
hasattr(t, '_as_mpl_transform')):
t = t._as_mpl_transform(self.axes)
if t and any(t.contains_branch_seperately(self.transData)):
trans_to_data = t - self.transData
coords = trans_to_data.transform(coords)
self.add_collection(collection, autolim=False)
minx, miny = np.min(coords, axis=0)
maxx, maxy = np.max(coords, axis=0)
collection.sticky_edges.x[:] = [minx, maxx]
collection.sticky_edges.y[:] = [miny, maxy]
corners = (minx, miny), (maxx, maxy)
self.update_datalim(corners)
self._request_autoscale_view()
return collection
@_preprocess_data()
@docstring.dedent_interpd
def pcolorfast(self, *args, alpha=None, norm=None, cmap=None, vmin=None,
vmax=None, **kwargs):
"""
Create a pseudocolor plot with a non-regular rectangular grid.
Call signature::
ax.pcolorfast([X, Y], C, /, **kwargs)
This method is similar to `~.Axes.pcolor` and `~.Axes.pcolormesh`.
It's designed to provide the fastest pcolor-type plotting with the
Agg backend. To achieve this, it uses different algorithms internally
depending on the complexity of the input grid (regular rectangular,
non-regular rectangular or arbitrary quadrilateral).
.. warning::
This method is experimental. Compared to `~.Axes.pcolor` or
`~.Axes.pcolormesh` it has some limitations:
- It supports only flat shading (no outlines)
- It lacks support for log scaling of the axes.
- It does not have a have a pyplot wrapper.
Parameters
----------
C : array-like(M, N)
The image data. Supported array shapes are:
- (M, N): an image with scalar data. The data is visualized
using a colormap.
- (M, N, 3): an image with RGB values (0-1 float or 0-255 int).
- (M, N, 4): an image with RGBA values (0-1 float or 0-255 int),
i.e. including transparency.
The first two dimensions (M, N) define the rows and columns of
the image.
This parameter can only be passed positionally.
X, Y : tuple or array-like, default: ``(0, N)``, ``(0, M)``
*X* and *Y* are used to specify the coordinates of the
quadrilaterals. There are different ways to do this:
- Use tuples ``X=(xmin, xmax)`` and ``Y=(ymin, ymax)`` to define
a *uniform rectangular grid*.
The tuples define the outer edges of the grid. All individual
quadrilaterals will be of the same size. This is the fastest
version.
- Use 1D arrays *X*, *Y* to specify a *non-uniform rectangular
grid*.
In this case *X* and *Y* have to be monotonic 1D arrays of length
*N+1* and *M+1*, specifying the x and y boundaries of the cells.
The speed is intermediate. Note: The grid is checked, and if
found to be uniform the fast version is used.
- Use 2D arrays *X*, *Y* if you need an *arbitrary quadrilateral
grid* (i.e. if the quadrilaterals are not rectangular).
In this case *X* and *Y* are 2D arrays with shape (M + 1, N + 1),
specifying the x and y coordinates of the corners of the colored
quadrilaterals.
This is the most general, but the slowest to render. It may
produce faster and more compact output using ps, pdf, and
svg backends, however.
These arguments can only be passed positionally.
cmap : str or `~matplotlib.colors.Colormap`, default: :rc:`image.cmap`
A Colormap instance or registered colormap name. The colormap
maps the *C* values to colors.
norm : `~matplotlib.colors.Normalize`, optional
The Normalize instance scales the data values to the canonical
colormap range [0, 1] for mapping to colors. By default, the data
range is mapped to the colorbar range using linear scaling.
vmin, vmax : float, default: None
The colorbar range. If *None*, suitable min/max values are
automatically chosen by the `~.Normalize` instance (defaults to
the respective min/max values of *C* in case of the default linear
scaling).
It is deprecated to use *vmin*/*vmax* when *norm* is given.
alpha : float, default: None
The alpha blending value, between 0 (transparent) and 1 (opaque).
snap : bool, default: False
Whether to snap the mesh to pixel boundaries.
Returns
-------
`.AxesImage` or `.PcolorImage` or `.QuadMesh`
The return type depends on the type of grid:
- `.AxesImage` for a regular rectangular grid.
- `.PcolorImage` for a non-regular rectangular grid.
- `.QuadMesh` for a non-rectangular grid.
Other Parameters
----------------
**kwargs
Supported additional parameters depend on the type of grid.
See return types of *image* for further description.
Notes
-----
.. [notes section required to get data note injection right]
"""
C = args[-1]
nr, nc = np.shape(C)[:2]
if len(args) == 1:
style = "image"
x = [0, nc]
y = [0, nr]
elif len(args) == 3:
x, y = args[:2]
x = np.asarray(x)
y = np.asarray(y)
if x.ndim == 1 and y.ndim == 1:
if x.size == 2 and y.size == 2:
style = "image"
else:
dx = np.diff(x)
dy = np.diff(y)
if (np.ptp(dx) < 0.01 * abs(dx.mean()) and
np.ptp(dy) < 0.01 * abs(dy.mean())):
style = "image"
else:
style = "pcolorimage"
elif x.ndim == 2 and y.ndim == 2:
style = "quadmesh"
else:
raise TypeError("arguments do not match valid signatures")
else:
raise TypeError("need 1 argument or 3 arguments")
if style == "quadmesh":
# data point in each cell is value at lower left corner
coords = np.stack([x, y], axis=-1)
if np.ndim(C) == 2:
qm_kwargs = {"array": np.ma.ravel(C)}
elif np.ndim(C) == 3:
qm_kwargs = {"color": np.ma.reshape(C, (-1, C.shape[-1]))}
else:
raise ValueError("C must be 2D or 3D")
collection = mcoll.QuadMesh(
nc, nr, coords, **qm_kwargs,
alpha=alpha, cmap=cmap, norm=norm,
antialiased=False, edgecolors="none")
self.add_collection(collection, autolim=False)
xl, xr, yb, yt = x.min(), x.max(), y.min(), y.max()
ret = collection
else: # It's one of the two image styles.
extent = xl, xr, yb, yt = x[0], x[-1], y[0], y[-1]
if style == "image":
im = mimage.AxesImage(
self, cmap, norm,
data=C, alpha=alpha, extent=extent,
interpolation='nearest', origin='lower',
**kwargs)
elif style == "pcolorimage":
im = mimage.PcolorImage(
self, x, y, C,
cmap=cmap, norm=norm, alpha=alpha, extent=extent,
**kwargs)
self.add_image(im)
ret = im
if np.ndim(C) == 2: # C.ndim == 3 is RGB(A) so doesn't need scaling.
ret._scale_norm(norm, vmin, vmax)
if ret.get_clip_path() is None:
# image does not already have clipping set, clip to axes patch
ret.set_clip_path(self.patch)
ret.sticky_edges.x[:] = [xl, xr]
ret.sticky_edges.y[:] = [yb, yt]
self.update_datalim(np.array([[xl, yb], [xr, yt]]))
self._request_autoscale_view(tight=True)
return ret
@_preprocess_data()
def contour(self, *args, **kwargs):
kwargs['filled'] = False
contours = mcontour.QuadContourSet(self, *args, **kwargs)
self._request_autoscale_view()
return contours
contour.__doc__ = mcontour.QuadContourSet._contour_doc
@_preprocess_data()
def contourf(self, *args, **kwargs):
kwargs['filled'] = True
contours = mcontour.QuadContourSet(self, *args, **kwargs)
self._request_autoscale_view()
return contours
contourf.__doc__ = mcontour.QuadContourSet._contour_doc
def clabel(self, CS, levels=None, **kwargs):
"""
Label a contour plot.
Adds labels to line contours in given `.ContourSet`.
Parameters
----------
CS : `~.ContourSet` instance
Line contours to label.
levels : array-like, optional
A list of level values, that should be labeled. The list must be
a subset of ``CS.levels``. If not given, all levels are labeled.
**kwargs
All other parameters are documented in `~.ContourLabeler.clabel`.
"""
return CS.clabel(levels, **kwargs)
#### Data analysis
@_preprocess_data(replace_names=["x", 'weights'], label_namer="x")
def hist(self, x, bins=None, range=None, density=False, weights=None,
cumulative=False, bottom=None, histtype='bar', align='mid',
orientation='vertical', rwidth=None, log=False,
color=None, label=None, stacked=False, **kwargs):
"""
Plot a histogram.
Compute and draw the histogram of *x*. The return value is a tuple
(*n*, *bins*, *patches*) or ([*n0*, *n1*, ...], *bins*, [*patches0*,
*patches1*, ...]) if the input contains multiple data. See the
documentation of the *weights* parameter to draw a histogram of
already-binned data.
Multiple data can be provided via *x* as a list of datasets
of potentially different length ([*x0*, *x1*, ...]), or as
a 2-D ndarray in which each column is a dataset. Note that
the ndarray form is transposed relative to the list form.
Masked arrays are not supported.
The *bins*, *range*, *weights*, and *density* parameters behave as in
`numpy.histogram`.
Parameters
----------
x : (n,) array or sequence of (n,) arrays
Input values, this takes either a single array or a sequence of
arrays which are not required to be of the same length.
bins : int or sequence or str, default: :rc:`hist.bins`
If *bins* is an integer, it defines the number of equal-width bins
in the range.
If *bins* is a sequence, it defines the bin edges, including the
left edge of the first bin and the right edge of the last bin;
in this case, bins may be unequally spaced. All but the last
(righthand-most) bin is half-open. In other words, if *bins* is::
[1, 2, 3, 4]
then the first bin is ``[1, 2)`` (including 1, but excluding 2) and
the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which
*includes* 4.
If *bins* is a string, it is one of the binning strategies
supported by `numpy.histogram_bin_edges`: 'auto', 'fd', 'doane',
'scott', 'stone', 'rice', 'sturges', or 'sqrt'.
range : tuple or None, default: None
The lower and upper range of the bins. Lower and upper outliers
are ignored. If not provided, *range* is ``(x.min(), x.max())``.
Range has no effect if *bins* is a sequence.
If *bins* is a sequence or *range* is specified, autoscaling
is based on the specified bin range instead of the
range of x.
density : bool, default: False
If ``True``, draw and return a probability density: each bin
will display the bin's raw count divided by the total number of
counts *and the bin width*
(``density = counts / (sum(counts) * np.diff(bins))``),
so that the area under the histogram integrates to 1
(``np.sum(density * np.diff(bins)) == 1``).
If *stacked* is also ``True``, the sum of the histograms is
normalized to 1.
weights : (n,) array-like or None, default: None
An array of weights, of the same shape as *x*. Each value in
*x* only contributes its associated weight towards the bin count
(instead of 1). If *density* is ``True``, the weights are
normalized, so that the integral of the density over the range
remains 1.
This parameter can be used to draw a histogram of data that has
already been binned, e.g. using `numpy.histogram` (by treating each
bin as a single point with a weight equal to its count) ::
counts, bins = np.histogram(data)
plt.hist(bins[:-1], bins, weights=counts)
(or you may alternatively use `~.bar()`).
cumulative : bool or -1, default: False
If ``True``, then a histogram is computed where each bin gives the
counts in that bin plus all bins for smaller values. The last bin
gives the total number of datapoints.
If *density* is also ``True`` then the histogram is normalized such
that the last bin equals 1.
If *cumulative* is a number less than 0 (e.g., -1), the direction
of accumulation is reversed. In this case, if *density* is also
``True``, then the histogram is normalized such that the first bin
equals 1.
bottom : array-like, scalar, or None, default: None
Location of the bottom of each bin, ie. bins are drawn from
``bottom`` to ``bottom + hist(x, bins)`` If a scalar, the bottom
of each bin is shifted by the same amount. If an array, each bin
is shifted independently and the length of bottom must match the
number of bins. If None, defaults to 0.
histtype : {'bar', 'barstacked', 'step', 'stepfilled'}, default: 'bar'
The type of histogram to draw.
- 'bar' is a traditional bar-type histogram. If multiple data
are given the bars are arranged side by side.
- 'barstacked' is a bar-type histogram where multiple
data are stacked on top of each other.
- 'step' generates a lineplot that is by default unfilled.
- 'stepfilled' generates a lineplot that is by default filled.
align : {'left', 'mid', 'right'}, default: 'mid'
The horizontal alignment of the histogram bars.
- 'left': bars are centered on the left bin edges.
- 'mid': bars are centered between the bin edges.
- 'right': bars are centered on the right bin edges.
orientation : {'vertical', 'horizontal'}, default: 'vertical'
If 'horizontal', `~.Axes.barh` will be used for bar-type histograms
and the *bottom* kwarg will be the left edges.
rwidth : float or None, default: None
The relative width of the bars as a fraction of the bin width. If
``None``, automatically compute the width.
Ignored if *histtype* is 'step' or 'stepfilled'.
log : bool, default: False
If ``True``, the histogram axis will be set to a log scale. If
*log* is ``True`` and *x* is a 1D array, empty bins will be
filtered out and only the non-empty ``(n, bins, patches)``
will be returned.
color : color or array-like of colors or None, default: None
Color or sequence of colors, one per dataset. Default (``None``)
uses the standard line color sequence.
label : str or None, default: None
String, or sequence of strings to match multiple datasets. Bar
charts yield multiple patches per dataset, but only the first gets
the label, so that `~.Axes.legend` will work as expected.
stacked : bool, default: False
If ``True``, multiple data are stacked on top of each other If
``False`` multiple data are arranged side by side if histtype is
'bar' or on top of each other if histtype is 'step'
Returns
-------
n : array or list of arrays
The values of the histogram bins. See *density* and *weights* for a
description of the possible semantics. If input *x* is an array,
then this is an array of length *nbins*. If input is a sequence of
arrays ``[data1, data2, ...]``, then this is a list of arrays with
the values of the histograms for each of the arrays in the same
order. The dtype of the array *n* (or of its element arrays) will
always be float even if no weighting or normalization is used.
bins : array
The edges of the bins. Length nbins + 1 (nbins left edges and right
edge of last bin). Always a single array even when multiple data
sets are passed in.
patches : `.BarContainer` or list of a single `.Polygon` or list of \
such objects
Container of individual artists used to create the histogram
or list of such containers if there are multiple input datasets.
Other Parameters
----------------
**kwargs
`~matplotlib.patches.Patch` properties
See Also
--------
hist2d : 2D histograms
Notes
-----
For large numbers of bins (>1000), 'step' and 'stepfilled' can be
significantly faster than 'bar' and 'barstacked'.
"""
# Avoid shadowing the builtin.
bin_range = range
from builtins import range
if np.isscalar(x):
x = [x]
if bins is None:
bins = rcParams['hist.bins']
# Validate string inputs here to avoid cluttering subsequent code.
cbook._check_in_list(['bar', 'barstacked', 'step', 'stepfilled'],
histtype=histtype)
cbook._check_in_list(['left', 'mid', 'right'], align=align)
cbook._check_in_list(['horizontal', 'vertical'],
orientation=orientation)
if histtype == 'barstacked' and not stacked:
stacked = True
# Massage 'x' for processing.
x = cbook._reshape_2D(x, 'x')
nx = len(x) # number of datasets
# Process unit information
# Unit conversion is done individually on each dataset
self._process_unit_info(xdata=x[0], kwargs=kwargs)
x = [self.convert_xunits(xi) for xi in x]
if bin_range is not None:
bin_range = self.convert_xunits(bin_range)
if not cbook.is_scalar_or_string(bins):
bins = self.convert_xunits(bins)
# We need to do to 'weights' what was done to 'x'
if weights is not None:
w = cbook._reshape_2D(weights, 'weights')
else:
w = [None] * nx
if len(w) != nx:
raise ValueError('weights should have the same shape as x')
input_empty = True
for xi, wi in zip(x, w):
len_xi = len(xi)
if wi is not None and len(wi) != len_xi:
raise ValueError('weights should have the same shape as x')
if len_xi:
input_empty = False
if color is None:
color = [self._get_lines.get_next_color() for i in range(nx)]
else:
color = mcolors.to_rgba_array(color)
if len(color) != nx:
raise ValueError(f"The 'color' keyword argument must have one "
f"color per dataset, but {nx} datasets and "
f"{len(color)} colors were provided")
hist_kwargs = dict()
# if the bin_range is not given, compute without nan numpy
# does not do this for us when guessing the range (but will
# happily ignore nans when computing the histogram).
if bin_range is None:
xmin = np.inf
xmax = -np.inf
for xi in x:
if len(xi):
# python's min/max ignore nan,
# np.minnan returns nan for all nan input
xmin = min(xmin, np.nanmin(xi))
xmax = max(xmax, np.nanmax(xi))
if xmin <= xmax: # Only happens if we have seen a finite value.
bin_range = (xmin, xmax)
# If bins are not specified either explicitly or via range,
# we need to figure out the range required for all datasets,
# and supply that to np.histogram.
if not input_empty and len(x) > 1:
if weights is not None:
_w = np.concatenate(w)
else:
_w = None
bins = np.histogram_bin_edges(
np.concatenate(x), bins, bin_range, _w)
else:
hist_kwargs['range'] = bin_range
density = bool(density)
if density and not stacked:
hist_kwargs['density'] = density
# List to store all the top coordinates of the histograms
tops = [] # Will have shape (n_datasets, n_bins).
# Loop through datasets
for i in range(nx):
# this will automatically overwrite bins,
# so that each histogram uses the same bins
m, bins = np.histogram(x[i], bins, weights=w[i], **hist_kwargs)
tops.append(m)
tops = np.array(tops, float) # causes problems later if it's an int
if stacked:
tops = tops.cumsum(axis=0)
# If a stacked density plot, normalize so the area of all the
# stacked histograms together is 1
if density:
tops = (tops / np.diff(bins)) / tops[-1].sum()
if cumulative:
slc = slice(None)
if isinstance(cumulative, Number) and cumulative < 0:
slc = slice(None, None, -1)
if density:
tops = (tops * np.diff(bins))[:, slc].cumsum(axis=1)[:, slc]
else:
tops = tops[:, slc].cumsum(axis=1)[:, slc]
patches = []
# Save autoscale state for later restoration; turn autoscaling
# off so we can do it all a single time at the end, instead
# of having it done by bar or fill and then having to be redone.
_saved_autoscalex = self.get_autoscalex_on()
_saved_autoscaley = self.get_autoscaley_on()
self.set_autoscalex_on(False)
self.set_autoscaley_on(False)
if histtype.startswith('bar'):
totwidth = np.diff(bins)
if rwidth is not None:
dr = np.clip(rwidth, 0, 1)
elif (len(tops) > 1 and
((not stacked) or rcParams['_internal.classic_mode'])):
dr = 0.8
else:
dr = 1.0
if histtype == 'bar' and not stacked:
width = dr * totwidth / nx
dw = width
boffset = -0.5 * dr * totwidth * (1 - 1 / nx)
elif histtype == 'barstacked' or stacked:
width = dr * totwidth
boffset, dw = 0.0, 0.0
if align == 'mid':
boffset += 0.5 * totwidth
elif align == 'right':
boffset += totwidth
if orientation == 'horizontal':
_barfunc = self.barh
bottom_kwarg = 'left'
else: # orientation == 'vertical'
_barfunc = self.bar
bottom_kwarg = 'bottom'
for m, c in zip(tops, color):
if bottom is None:
bottom = np.zeros(len(m))
if stacked:
height = m - bottom
else:
height = m
bars = _barfunc(bins[:-1]+boffset, height, width,
align='center', log=log,
color=c, **{bottom_kwarg: bottom})
patches.append(bars)
if stacked:
bottom[:] = m
boffset += dw
# Remove stickies from all bars but the lowest ones, as otherwise
# margin expansion would be unable to cross the stickies in the
# middle of the bars.
for bars in patches[1:]:
for patch in bars:
patch.sticky_edges.x[:] = patch.sticky_edges.y[:] = []
elif histtype.startswith('step'):
# these define the perimeter of the polygon
x = np.zeros(4 * len(bins) - 3)
y = np.zeros(4 * len(bins) - 3)
x[0:2*len(bins)-1:2], x[1:2*len(bins)-1:2] = bins, bins[:-1]
x[2*len(bins)-1:] = x[1:2*len(bins)-1][::-1]
if bottom is None:
bottom = 0
y[1:2*len(bins)-1:2] = y[2:2*len(bins):2] = bottom
y[2*len(bins)-1:] = y[1:2*len(bins)-1][::-1]
if log:
if orientation == 'horizontal':
self.set_xscale('log', nonpositive='clip')
else: # orientation == 'vertical'
self.set_yscale('log', nonpositive='clip')
if align == 'left':
x -= 0.5*(bins[1]-bins[0])
elif align == 'right':
x += 0.5*(bins[1]-bins[0])
# If fill kwarg is set, it will be passed to the patch collection,
# overriding this
fill = (histtype == 'stepfilled')
xvals, yvals = [], []
for m in tops:
if stacked:
# top of the previous polygon becomes the bottom
y[2*len(bins)-1:] = y[1:2*len(bins)-1][::-1]
# set the top of this polygon
y[1:2*len(bins)-1:2] = y[2:2*len(bins):2] = m + bottom
# The starting point of the polygon has not yet been
# updated. So far only the endpoint was adjusted. This
# assignment closes the polygon. The redundant endpoint is
# later discarded (for step and stepfilled).
y[0] = y[-1]
if orientation == 'horizontal':
xvals.append(y.copy())
yvals.append(x.copy())
else:
xvals.append(x.copy())
yvals.append(y.copy())
# stepfill is closed, step is not
split = -1 if fill else 2 * len(bins)
# add patches in reverse order so that when stacking,
# items lower in the stack are plotted on top of
# items higher in the stack
for x, y, c in reversed(list(zip(xvals, yvals, color))):
patches.append(self.fill(
x[:split], y[:split],
closed=True if fill else None,
facecolor=c,
edgecolor=None if fill else c,
fill=fill if fill else None,
zorder=None if fill else mlines.Line2D.zorder))
for patch_list in patches:
for patch in patch_list:
if orientation == 'vertical':
patch.sticky_edges.y.append(0)
elif orientation == 'horizontal':
patch.sticky_edges.x.append(0)
# we return patches, so put it back in the expected order
patches.reverse()
self.set_autoscalex_on(_saved_autoscalex)
self.set_autoscaley_on(_saved_autoscaley)
self._request_autoscale_view()
# If None, make all labels None (via zip_longest below); otherwise,
# cast each element to str, but keep a single str as it.
labels = [] if label is None else np.atleast_1d(np.asarray(label, str))
for patch, lbl in itertools.zip_longest(patches, labels):
if patch:
p = patch[0]
p.update(kwargs)
if lbl is not None:
p.set_label(lbl)
for p in patch[1:]:
p.update(kwargs)
p.set_label('_nolegend_')
if nx == 1:
return tops[0], bins, patches[0]
else:
patch_type = ("BarContainer" if histtype.startswith("bar")
else "List[Polygon]")
return tops, bins, cbook.silent_list(patch_type, patches)
@_preprocess_data(replace_names=["x", "y", "weights"])
@docstring.dedent_interpd
def hist2d(self, x, y, bins=10, range=None, density=False, weights=None,
cmin=None, cmax=None, **kwargs):
"""
Make a 2D histogram plot.
Parameters
----------
x, y : array-like, shape (n, )
Input values
bins : None or int or [int, int] or array-like or [array, array]
The bin specification:
- If int, the number of bins for the two dimensions
(nx=ny=bins).
- If ``[int, int]``, the number of bins in each dimension
(nx, ny = bins).
- If array-like, the bin edges for the two dimensions
(x_edges=y_edges=bins).
- If ``[array, array]``, the bin edges in each dimension
(x_edges, y_edges = bins).
The default value is 10.
range : array-like shape(2, 2), optional
The leftmost and rightmost edges of the bins along each dimension
(if not specified explicitly in the bins parameters): ``[[xmin,
xmax], [ymin, ymax]]``. All values outside of this range will be
considered outliers and not tallied in the histogram.
density : bool, default: False
Normalize histogram. See the documentation for the *density*
parameter of `~.Axes.hist` for more details.
weights : array-like, shape (n, ), optional
An array of values w_i weighing each sample (x_i, y_i).
cmin, cmax : float, default: None
All bins that has count less than *cmin* or more than *cmax* will
not be displayed (set to NaN before passing to imshow) and these
count values in the return value count histogram will also be set
to nan upon return.
Returns
-------
h : 2D array
The bi-dimensional histogram of samples x and y. Values in x are
histogrammed along the first dimension and values in y are
histogrammed along the second dimension.
xedges : 1D array
The bin edges along the x axis.
yedges : 1D array
The bin edges along the y axis.
image : `~.matplotlib.collections.QuadMesh`
Other Parameters
----------------
cmap : Colormap or str, optional
A `.colors.Colormap` instance. If not set, use rc settings.
norm : Normalize, optional
A `.colors.Normalize` instance is used to
scale luminance data to ``[0, 1]``. If not set, defaults to
`.colors.Normalize()`.
vmin/vmax : None or scalar, optional
Arguments passed to the `~.colors.Normalize` instance.
alpha : ``0 <= scalar <= 1`` or ``None``, optional
The alpha blending value.
**kwargs
Additional parameters are passed along to the
`~.Axes.pcolormesh` method and `~matplotlib.collections.QuadMesh`
constructor.
See Also
--------
hist : 1D histogram plotting
Notes
-----
- Currently ``hist2d`` calculates its own axis limits, and any limits
previously set are ignored.
- Rendering the histogram with a logarithmic color scale is
accomplished by passing a `.colors.LogNorm` instance to the *norm*
keyword argument. Likewise, power-law normalization (similar
in effect to gamma correction) can be accomplished with
`.colors.PowerNorm`.
"""
h, xedges, yedges = np.histogram2d(x, y, bins=bins, range=range,
density=density, weights=weights)
if cmin is not None:
h[h < cmin] = None
if cmax is not None:
h[h > cmax] = None
pc = self.pcolormesh(xedges, yedges, h.T, **kwargs)
self.set_xlim(xedges[0], xedges[-1])
self.set_ylim(yedges[0], yedges[-1])
return h, xedges, yedges, pc
@_preprocess_data(replace_names=["x"])
@docstring.dedent_interpd
def psd(self, x, NFFT=None, Fs=None, Fc=None, detrend=None,
window=None, noverlap=None, pad_to=None,
sides=None, scale_by_freq=None, return_line=None, **kwargs):
r"""
Plot the power spectral density.
The power spectral density :math:`P_{xx}` by Welch's average
periodogram method. The vector *x* is divided into *NFFT* length
segments. Each segment is detrended by function *detrend* and
windowed by function *window*. *noverlap* gives the length of
the overlap between segments. The :math:`|\mathrm{fft}(i)|^2`
of each segment :math:`i` are averaged to compute :math:`P_{xx}`,
with a scaling to correct for power loss due to windowing.
If len(*x*) < *NFFT*, it will be zero padded to *NFFT*.
Parameters
----------
x : 1-D array or sequence
Array or sequence containing the data
%(Spectral)s
%(PSD)s
noverlap : int, default: 0 (no overlap)
The number of points of overlap between segments.
Fc : int, default: 0
The center frequency of *x*, which offsets the x extents of the
plot to reflect the frequency range used when a signal is acquired
and then filtered and downsampled to baseband.
return_line : bool, default: False
Whether to include the line object plotted in the returned values.
Returns
-------
Pxx : 1-D array
The values for the power spectrum :math:`P_{xx}` before scaling
(real valued).
freqs : 1-D array
The frequencies corresponding to the elements in *Pxx*.
line : `~matplotlib.lines.Line2D`
The line created by this function.
Only returned if *return_line* is True.
Other Parameters
----------------
**kwargs
Keyword arguments control the `.Line2D` properties:
%(_Line2D_docstr)s
See Also
--------
specgram
Differs in the default overlap; in not returning the mean of the
segment periodograms; in returning the times of the segments; and
in plotting a colormap instead of a line.
magnitude_spectrum
Plots the magnitude spectrum.
csd
Plots the spectral density between two signals.
Notes
-----
For plotting, the power is plotted as
:math:`10\log_{10}(P_{xx})` for decibels, though *Pxx* itself
is returned.
References
----------
Bendat & Piersol -- Random Data: Analysis and Measurement Procedures,
John Wiley & Sons (1986)
"""
if Fc is None:
Fc = 0
pxx, freqs = mlab.psd(x=x, NFFT=NFFT, Fs=Fs, detrend=detrend,
window=window, noverlap=noverlap, pad_to=pad_to,
sides=sides, scale_by_freq=scale_by_freq)
freqs += Fc
if scale_by_freq in (None, True):
psd_units = 'dB/Hz'
else:
psd_units = 'dB'
line = self.plot(freqs, 10 * np.log10(pxx), **kwargs)
self.set_xlabel('Frequency')
self.set_ylabel('Power Spectral Density (%s)' % psd_units)
self.grid(True)
vmin, vmax = self.viewLim.intervaly
intv = vmax - vmin
logi = int(np.log10(intv))
if logi == 0:
logi = .1
step = 10 * logi
ticks = np.arange(math.floor(vmin), math.ceil(vmax) + 1, step)
self.set_yticks(ticks)
if return_line is None or not return_line:
return pxx, freqs
else:
return pxx, freqs, line
@_preprocess_data(replace_names=["x", "y"], label_namer="y")
@docstring.dedent_interpd
def csd(self, x, y, NFFT=None, Fs=None, Fc=None, detrend=None,
window=None, noverlap=None, pad_to=None,
sides=None, scale_by_freq=None, return_line=None, **kwargs):
r"""
Plot the cross-spectral density.
The cross spectral density :math:`P_{xy}` by Welch's average
periodogram method. The vectors *x* and *y* are divided into
*NFFT* length segments. Each segment is detrended by function
*detrend* and windowed by function *window*. *noverlap* gives
the length of the overlap between segments. The product of
the direct FFTs of *x* and *y* are averaged over each segment
to compute :math:`P_{xy}`, with a scaling to correct for power
loss due to windowing.
If len(*x*) < *NFFT* or len(*y*) < *NFFT*, they will be zero
padded to *NFFT*.
Parameters
----------
x, y : 1-D arrays or sequences
Arrays or sequences containing the data.
%(Spectral)s
%(PSD)s
noverlap : int, default: 0 (no overlap)
The number of points of overlap between segments.
Fc : int, default: 0
The center frequency of *x*, which offsets the x extents of the
plot to reflect the frequency range used when a signal is acquired
and then filtered and downsampled to baseband.
return_line : bool, default: False
Whether to include the line object plotted in the returned values.
Returns
-------
Pxy : 1-D array
The values for the cross spectrum :math:`P_{xy}` before scaling
(complex valued).
freqs : 1-D array
The frequencies corresponding to the elements in *Pxy*.
line : `~matplotlib.lines.Line2D`
The line created by this function.
Only returned if *return_line* is True.
Other Parameters
----------------
**kwargs
Keyword arguments control the `.Line2D` properties:
%(_Line2D_docstr)s
See Also
--------
psd : is equivalent to setting ``y = x``.
Notes
-----
For plotting, the power is plotted as
:math:`10 \log_{10}(P_{xy})` for decibels, though :math:`P_{xy}` itself
is returned.
References
----------
Bendat & Piersol -- Random Data: Analysis and Measurement Procedures,
John Wiley & Sons (1986)
"""
if Fc is None:
Fc = 0
pxy, freqs = mlab.csd(x=x, y=y, NFFT=NFFT, Fs=Fs, detrend=detrend,
window=window, noverlap=noverlap, pad_to=pad_to,
sides=sides, scale_by_freq=scale_by_freq)
# pxy is complex
freqs += Fc
line = self.plot(freqs, 10 * np.log10(np.abs(pxy)), **kwargs)
self.set_xlabel('Frequency')
self.set_ylabel('Cross Spectrum Magnitude (dB)')
self.grid(True)
vmin, vmax = self.viewLim.intervaly
intv = vmax - vmin
step = 10 * int(np.log10(intv))
ticks = np.arange(math.floor(vmin), math.ceil(vmax) + 1, step)
self.set_yticks(ticks)
if return_line is None or not return_line:
return pxy, freqs
else:
return pxy, freqs, line
@_preprocess_data(replace_names=["x"])
@docstring.dedent_interpd
def magnitude_spectrum(self, x, Fs=None, Fc=None, window=None,
pad_to=None, sides=None, scale=None,
**kwargs):
"""
Plot the magnitude spectrum.
Compute the magnitude spectrum of *x*. Data is padded to a
length of *pad_to* and the windowing function *window* is applied to
the signal.
Parameters
----------
x : 1-D array or sequence
Array or sequence containing the data.
%(Spectral)s
%(Single_Spectrum)s
scale : {'default', 'linear', 'dB'}
The scaling of the values in the *spec*. 'linear' is no scaling.
'dB' returns the values in dB scale, i.e., the dB amplitude
(20 * log10). 'default' is 'linear'.
Fc : int, default: 0
The center frequency of *x*, which offsets the x extents of the
plot to reflect the frequency range used when a signal is acquired
and then filtered and downsampled to baseband.
Returns
-------
spectrum : 1-D array
The values for the magnitude spectrum before scaling (real valued).
freqs : 1-D array
The frequencies corresponding to the elements in *spectrum*.
line : `~matplotlib.lines.Line2D`
The line created by this function.
Other Parameters
----------------
**kwargs
Keyword arguments control the `.Line2D` properties:
%(_Line2D_docstr)s
See Also
--------
psd
Plots the power spectral density.
angle_spectrum
Plots the angles of the corresponding frequencies.
phase_spectrum
Plots the phase (unwrapped angle) of the corresponding frequencies.
specgram
Can plot the magnitude spectrum of segments within the signal in a
colormap.
"""
if Fc is None:
Fc = 0
spec, freqs = mlab.magnitude_spectrum(x=x, Fs=Fs, window=window,
pad_to=pad_to, sides=sides)
freqs += Fc
yunits = cbook._check_getitem(
{None: 'energy', 'default': 'energy', 'linear': 'energy',
'dB': 'dB'},
scale=scale)
if yunits == 'energy':
Z = spec
else: # yunits == 'dB'
Z = 20. * np.log10(spec)
line, = self.plot(freqs, Z, **kwargs)
self.set_xlabel('Frequency')
self.set_ylabel('Magnitude (%s)' % yunits)
return spec, freqs, line
@_preprocess_data(replace_names=["x"])
@docstring.dedent_interpd
def angle_spectrum(self, x, Fs=None, Fc=None, window=None,
pad_to=None, sides=None, **kwargs):
"""
Plot the angle spectrum.
Compute the angle spectrum (wrapped phase spectrum) of *x*.
Data is padded to a length of *pad_to* and the windowing function
*window* is applied to the signal.
Parameters
----------
x : 1-D array or sequence
Array or sequence containing the data.
%(Spectral)s
%(Single_Spectrum)s
Fc : int, default: 0
The center frequency of *x*, which offsets the x extents of the
plot to reflect the frequency range used when a signal is acquired
and then filtered and downsampled to baseband.
Returns
-------
spectrum : 1-D array
The values for the angle spectrum in radians (real valued).
freqs : 1-D array
The frequencies corresponding to the elements in *spectrum*.
line : `~matplotlib.lines.Line2D`
The line created by this function.
Other Parameters
----------------
**kwargs
Keyword arguments control the `.Line2D` properties:
%(_Line2D_docstr)s
See Also
--------
magnitude_spectrum
Plots the magnitudes of the corresponding frequencies.
phase_spectrum
Plots the unwrapped version of this function.
specgram
Can plot the angle spectrum of segments within the signal in a
colormap.
"""
if Fc is None:
Fc = 0
spec, freqs = mlab.angle_spectrum(x=x, Fs=Fs, window=window,
pad_to=pad_to, sides=sides)
freqs += Fc
lines = self.plot(freqs, spec, **kwargs)
self.set_xlabel('Frequency')
self.set_ylabel('Angle (radians)')
return spec, freqs, lines[0]
@_preprocess_data(replace_names=["x"])
@docstring.dedent_interpd
def phase_spectrum(self, x, Fs=None, Fc=None, window=None,
pad_to=None, sides=None, **kwargs):
"""
Plot the phase spectrum.
Compute the phase spectrum (unwrapped angle spectrum) of *x*.
Data is padded to a length of *pad_to* and the windowing function
*window* is applied to the signal.
Parameters
----------
x : 1-D array or sequence
Array or sequence containing the data
%(Spectral)s
%(Single_Spectrum)s
Fc : int, default: 0
The center frequency of *x*, which offsets the x extents of the
plot to reflect the frequency range used when a signal is acquired
and then filtered and downsampled to baseband.
Returns
-------
spectrum : 1-D array
The values for the phase spectrum in radians (real valued).
freqs : 1-D array
The frequencies corresponding to the elements in *spectrum*.
line : `~matplotlib.lines.Line2D`
The line created by this function.
Other Parameters
----------------
**kwargs
Keyword arguments control the `.Line2D` properties:
%(_Line2D_docstr)s
See Also
--------
magnitude_spectrum
Plots the magnitudes of the corresponding frequencies.
angle_spectrum
Plots the wrapped version of this function.
specgram
Can plot the phase spectrum of segments within the signal in a
colormap.
"""
if Fc is None:
Fc = 0
spec, freqs = mlab.phase_spectrum(x=x, Fs=Fs, window=window,
pad_to=pad_to, sides=sides)
freqs += Fc
lines = self.plot(freqs, spec, **kwargs)
self.set_xlabel('Frequency')
self.set_ylabel('Phase (radians)')
return spec, freqs, lines[0]
@_preprocess_data(replace_names=["x", "y"])
@docstring.dedent_interpd
def cohere(self, x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, pad_to=None,
sides='default', scale_by_freq=None, **kwargs):
r"""
Plot the coherence between *x* and *y*.
Plot the coherence between *x* and *y*. Coherence is the
normalized cross spectral density:
.. math::
C_{xy} = \frac{|P_{xy}|^2}{P_{xx}P_{yy}}
Parameters
----------
%(Spectral)s
%(PSD)s
noverlap : int, default: 0 (no overlap)
The number of points of overlap between blocks.
Fc : int, default: 0
The center frequency of *x*, which offsets the x extents of the
plot to reflect the frequency range used when a signal is acquired
and then filtered and downsampled to baseband.
Returns
-------
Cxy : 1-D array
The coherence vector.
freqs : 1-D array
The frequencies for the elements in *Cxy*.
Other Parameters
----------------
**kwargs
Keyword arguments control the `.Line2D` properties:
%(_Line2D_docstr)s
References
----------
Bendat & Piersol -- Random Data: Analysis and Measurement Procedures,
John Wiley & Sons (1986)
"""
cxy, freqs = mlab.cohere(x=x, y=y, NFFT=NFFT, Fs=Fs, detrend=detrend,
window=window, noverlap=noverlap,
scale_by_freq=scale_by_freq)
freqs += Fc
self.plot(freqs, cxy, **kwargs)
self.set_xlabel('Frequency')
self.set_ylabel('Coherence')
self.grid(True)
return cxy, freqs
@_preprocess_data(replace_names=["x"])
@docstring.dedent_interpd
def specgram(self, x, NFFT=None, Fs=None, Fc=None, detrend=None,
window=None, noverlap=None,
cmap=None, xextent=None, pad_to=None, sides=None,
scale_by_freq=None, mode=None, scale=None,
vmin=None, vmax=None, **kwargs):
"""
Plot a spectrogram.
Compute and plot a spectrogram of data in *x*. Data are split into
*NFFT* length segments and the spectrum of each section is
computed. The windowing function *window* is applied to each
segment, and the amount of overlap of each segment is
specified with *noverlap*. The spectrogram is plotted as a colormap
(using imshow).
Parameters
----------
x : 1-D array or sequence
Array or sequence containing the data.
%(Spectral)s
%(PSD)s
mode : {'default', 'psd', 'magnitude', 'angle', 'phase'}
What sort of spectrum to use. Default is 'psd', which takes the
power spectral density. 'magnitude' returns the magnitude
spectrum. 'angle' returns the phase spectrum without unwrapping.
'phase' returns the phase spectrum with unwrapping.
noverlap : int
The number of points of overlap between blocks. The
default value is 128.
scale : {'default', 'linear', 'dB'}
The scaling of the values in the *spec*. 'linear' is no scaling.
'dB' returns the values in dB scale. When *mode* is 'psd',
this is dB power (10 * log10). Otherwise this is dB amplitude
(20 * log10). 'default' is 'dB' if *mode* is 'psd' or
'magnitude' and 'linear' otherwise. This must be 'linear'
if *mode* is 'angle' or 'phase'.
Fc : int, default: 0
The center frequency of *x*, which offsets the x extents of the
plot to reflect the frequency range used when a signal is acquired
and then filtered and downsampled to baseband.
cmap : `.Colormap`, default: :rc:`image.cmap`
xextent : *None* or (xmin, xmax)
The image extent along the x-axis. The default sets *xmin* to the
left border of the first bin (*spectrum* column) and *xmax* to the
right border of the last bin. Note that for *noverlap>0* the width
of the bins is smaller than those of the segments.
**kwargs
Additional keyword arguments are passed on to `~.axes.Axes.imshow`
which makes the specgram image.
Returns
-------
spectrum : 2-D array
Columns are the periodograms of successive segments.
freqs : 1-D array
The frequencies corresponding to the rows in *spectrum*.
t : 1-D array
The times corresponding to midpoints of segments (i.e., the columns
in *spectrum*).
im : `.AxesImage`
The image created by imshow containing the spectrogram.
See Also
--------
psd
Differs in the default overlap; in returning the mean of the
segment periodograms; in not returning times; and in generating a
line plot instead of colormap.
magnitude_spectrum
A single spectrum, similar to having a single segment when *mode*
is 'magnitude'. Plots a line instead of a colormap.
angle_spectrum
A single spectrum, similar to having a single segment when *mode*
is 'angle'. Plots a line instead of a colormap.
phase_spectrum
A single spectrum, similar to having a single segment when *mode*
is 'phase'. Plots a line instead of a colormap.
Notes
-----
The parameters *detrend* and *scale_by_freq* do only apply when *mode*
is set to 'psd'.
"""
if NFFT is None:
NFFT = 256 # same default as in mlab.specgram()
if Fc is None:
Fc = 0 # same default as in mlab._spectral_helper()
if noverlap is None:
noverlap = 128 # same default as in mlab.specgram()
if Fs is None:
Fs = 2 # same default as in mlab._spectral_helper()
if mode == 'complex':
raise ValueError('Cannot plot a complex specgram')
if scale is None or scale == 'default':
if mode in ['angle', 'phase']:
scale = 'linear'
else:
scale = 'dB'
elif mode in ['angle', 'phase'] and scale == 'dB':
raise ValueError('Cannot use dB scale with angle or phase mode')
spec, freqs, t = mlab.specgram(x=x, NFFT=NFFT, Fs=Fs,
detrend=detrend, window=window,
noverlap=noverlap, pad_to=pad_to,
sides=sides,
scale_by_freq=scale_by_freq,
mode=mode)
if scale == 'linear':
Z = spec
elif scale == 'dB':
if mode is None or mode == 'default' or mode == 'psd':
Z = 10. * np.log10(spec)
else:
Z = 20. * np.log10(spec)
else:
raise ValueError('Unknown scale %s', scale)
Z = np.flipud(Z)
if xextent is None:
# padding is needed for first and last segment:
pad_xextent = (NFFT-noverlap) / Fs / 2
xextent = np.min(t) - pad_xextent, np.max(t) + pad_xextent
xmin, xmax = xextent
freqs += Fc
extent = xmin, xmax, freqs[0], freqs[-1]
im = self.imshow(Z, cmap, extent=extent, vmin=vmin, vmax=vmax,
**kwargs)
self.axis('auto')
return spec, freqs, t, im
@docstring.dedent_interpd
def spy(self, Z, precision=0, marker=None, markersize=None,
aspect='equal', origin="upper", **kwargs):
"""
Plot the sparsity pattern of a 2D array.
This visualizes the non-zero values of the array.
Two plotting styles are available: image and marker. Both
are available for full arrays, but only the marker style
works for `scipy.sparse.spmatrix` instances.
**Image style**
If *marker* and *markersize* are *None*, `~.Axes.imshow` is used. Any
extra remaining keyword arguments are passed to this method.
**Marker style**
If *Z* is a `scipy.sparse.spmatrix` or *marker* or *markersize* are
*None*, a `.Line2D` object will be returned with the value of marker
determining the marker type, and any remaining keyword arguments
passed to `~.Axes.plot`.
Parameters
----------
Z : array-like (M, N)
The array to be plotted.
precision : float or 'present', default: 0
If *precision* is 0, any non-zero value will be plotted. Otherwise,
values of :math:`|Z| > precision` will be plotted.
For `scipy.sparse.spmatrix` instances, you can also
pass 'present'. In this case any value present in the array
will be plotted, even if it is identically zero.
aspect : {'equal', 'auto', None} or float, default: 'equal'
The aspect ratio of the axes. This parameter is particularly
relevant for images since it determines whether data pixels are
square.
This parameter is a shortcut for explicitly calling
`.Axes.set_aspect`. See there for further details.
- 'equal': Ensures an aspect ratio of 1. Pixels will be square.
- 'auto': The axes is kept fixed and the aspect is adjusted so
that the data fit in the axes. In general, this will result in
non-square pixels.
- *None*: Use :rc:`image.aspect`.
origin : {'upper', 'lower'}, default: :rc:`image.origin`
Place the [0, 0] index of the array in the upper left or lower left
corner of the axes. The convention 'upper' is typically used for
matrices and images.
Returns
-------
`~matplotlib.image.AxesImage` or `.Line2D`
The return type depends on the plotting style (see above).
Other Parameters
----------------
**kwargs
The supported additional parameters depend on the plotting style.
For the image style, you can pass the following additional
parameters of `~.Axes.imshow`:
- *cmap*
- *alpha*
- *url*
- any `.Artist` properties (passed on to the `.AxesImage`)
For the marker style, you can pass any `.Line2D` property except
for *linestyle*:
%(_Line2D_docstr)s
"""
if marker is None and markersize is None and hasattr(Z, 'tocoo'):
marker = 's'
cbook._check_in_list(["upper", "lower"], origin=origin)
if marker is None and markersize is None:
Z = np.asarray(Z)
mask = np.abs(Z) > precision
if 'cmap' not in kwargs:
kwargs['cmap'] = mcolors.ListedColormap(['w', 'k'],
name='binary')
if 'interpolation' in kwargs:
raise TypeError(
"spy() got an unexpected keyword argument 'interpolation'")
ret = self.imshow(mask, interpolation='nearest', aspect=aspect,
origin=origin, **kwargs)
else:
if hasattr(Z, 'tocoo'):
c = Z.tocoo()
if precision == 'present':
y = c.row
x = c.col
else:
nonzero = np.abs(c.data) > precision
y = c.row[nonzero]
x = c.col[nonzero]
else:
Z = np.asarray(Z)
nonzero = np.abs(Z) > precision
y, x = np.nonzero(nonzero)
if marker is None:
marker = 's'
if markersize is None:
markersize = 10
if 'linestyle' in kwargs:
raise TypeError(
"spy() got an unexpected keyword argument 'linestyle'")
ret = mlines.Line2D(
x, y, linestyle='None', marker=marker, markersize=markersize,
**kwargs)
self.add_line(ret)
nr, nc = Z.shape
self.set_xlim(-0.5, nc - 0.5)
if origin == "upper":
self.set_ylim(nr - 0.5, -0.5)
else:
self.set_ylim(-0.5, nr - 0.5)
self.set_aspect(aspect)
self.title.set_y(1.05)
if origin == "upper":
self.xaxis.tick_top()
else:
self.xaxis.tick_bottom()
self.xaxis.set_ticks_position('both')
self.xaxis.set_major_locator(
mticker.MaxNLocator(nbins=9, steps=[1, 2, 5, 10], integer=True))
self.yaxis.set_major_locator(
mticker.MaxNLocator(nbins=9, steps=[1, 2, 5, 10], integer=True))
return ret
def matshow(self, Z, **kwargs):
"""
Plot the values of a 2D matrix or array as color-coded image.
The matrix will be shown the way it would be printed, with the first
row at the top. Row and column numbering is zero-based.
Parameters
----------
Z : array-like(M, N)
The matrix to be displayed.
Returns
-------
`~matplotlib.image.AxesImage`
Other Parameters
----------------
**kwargs : `~matplotlib.axes.Axes.imshow` arguments
See Also
--------
imshow : More general function to plot data on a 2D regular raster.
Notes
-----
This is just a convenience function wrapping `.imshow` to set useful
defaults for displaying a matrix. In particular:
- Set ``origin='upper'``.
- Set ``interpolation='nearest'``.
- Set ``aspect='equal'``.
- Ticks are placed to the left and above.
- Ticks are formatted to show integer indices.
"""
Z = np.asanyarray(Z)
kw = {'origin': 'upper',
'interpolation': 'nearest',
'aspect': 'equal', # (already the imshow default)
**kwargs}
im = self.imshow(Z, **kw)
self.title.set_y(1.05)
self.xaxis.tick_top()
self.xaxis.set_ticks_position('both')
self.xaxis.set_major_locator(
mticker.MaxNLocator(nbins=9, steps=[1, 2, 5, 10], integer=True))
self.yaxis.set_major_locator(
mticker.MaxNLocator(nbins=9, steps=[1, 2, 5, 10], integer=True))
return im
@_preprocess_data(replace_names=["dataset"])
def violinplot(self, dataset, positions=None, vert=True, widths=0.5,
showmeans=False, showextrema=True, showmedians=False,
quantiles=None, points=100, bw_method=None):
"""
Make a violin plot.
Make a violin plot for each column of *dataset* or each vector in
sequence *dataset*. Each filled area extends to represent the
entire data range, with optional lines at the mean, the median,
the minimum, the maximum, and user-specified quantiles.
Parameters
----------
dataset : Array or a sequence of vectors.
The input data.
positions : array-like, default: [1, 2, ..., n]
Sets the positions of the violins. The ticks and limits are
automatically set to match the positions.
vert : bool, default: True.
If true, creates a vertical violin plot.
Otherwise, creates a horizontal violin plot.
widths : array-like, default: 0.5
Either a scalar or a vector that sets the maximal width of
each violin. The default is 0.5, which uses about half of the
available horizontal space.
showmeans : bool, default: False
If `True`, will toggle rendering of the means.
showextrema : bool, default: True
If `True`, will toggle rendering of the extrema.
showmedians : bool, default: False
If `True`, will toggle rendering of the medians.
quantiles : array-like, default: None
If not None, set a list of floats in interval [0, 1] for each violin,
which stands for the quantiles that will be rendered for that
violin.
points : int, default: 100
Defines the number of points to evaluate each of the
gaussian kernel density estimations at.
bw_method : str, scalar or callable, optional
The method used to calculate the estimator bandwidth. This can be
'scott', 'silverman', a scalar constant or a callable. If a
scalar, this will be used directly as `kde.factor`. If a
callable, it should take a `GaussianKDE` instance as its only
parameter and return a scalar. If None (default), 'scott' is used.
Returns
-------
dict
A dictionary mapping each component of the violinplot to a
list of the corresponding collection instances created. The
dictionary has the following keys:
- ``bodies``: A list of the `~.collections.PolyCollection`
instances containing the filled area of each violin.
- ``cmeans``: A `~.collections.LineCollection` instance that marks
the mean values of each of the violin's distribution.
- ``cmins``: A `~.collections.LineCollection` instance that marks
the bottom of each violin's distribution.
- ``cmaxes``: A `~.collections.LineCollection` instance that marks
the top of each violin's distribution.
- ``cbars``: A `~.collections.LineCollection` instance that marks
the centers of each violin's distribution.
- ``cmedians``: A `~.collections.LineCollection` instance that
marks the median values of each of the violin's distribution.
- ``cquantiles``: A `~.collections.LineCollection` instance created
to identify the quantile values of each of the violin's
distribution.
"""
def _kde_method(X, coords):
if hasattr(X, 'values'): # support pandas.Series
X = X.values
# fallback gracefully if the vector contains only one value
if np.all(X[0] == X):
return (X[0] == coords).astype(float)
kde = mlab.GaussianKDE(X, bw_method)
return kde.evaluate(coords)
vpstats = cbook.violin_stats(dataset, _kde_method, points=points,
quantiles=quantiles)
return self.violin(vpstats, positions=positions, vert=vert,
widths=widths, showmeans=showmeans,
showextrema=showextrema, showmedians=showmedians)
def violin(self, vpstats, positions=None, vert=True, widths=0.5,
showmeans=False, showextrema=True, showmedians=False):
"""
Drawing function for violin plots.
Draw a violin plot for each column of *vpstats*. Each filled area
extends to represent the entire data range, with optional lines at the
mean, the median, the minimum, the maximum, and the quantiles values.
Parameters
----------
vpstats : list of dicts
A list of dictionaries containing stats for each violin plot.
Required keys are:
- ``coords``: A list of scalars containing the coordinates that
the violin's kernel density estimate were evaluated at.
- ``vals``: A list of scalars containing the values of the
kernel density estimate at each of the coordinates given
in *coords*.
- ``mean``: The mean value for this violin's dataset.
- ``median``: The median value for this violin's dataset.
- ``min``: The minimum value for this violin's dataset.
- ``max``: The maximum value for this violin's dataset.
Optional keys are:
- ``quantiles``: A list of scalars containing the quantile values
for this violin's dataset.
positions : array-like, default: [1, 2, ..., n]
Sets the positions of the violins. The ticks and limits are
automatically set to match the positions.
vert : bool, default: True.
If true, plots the violins vertically.
Otherwise, plots the violins horizontally.
widths : array-like, default: 0.5
Either a scalar or a vector that sets the maximal width of
each violin. The default is 0.5, which uses about half of the
available horizontal space.
showmeans : bool, default: False
If true, will toggle rendering of the means.
showextrema : bool, default: True
If true, will toggle rendering of the extrema.
showmedians : bool, default: False
If true, will toggle rendering of the medians.
Returns
-------
dict
A dictionary mapping each component of the violinplot to a
list of the corresponding collection instances created. The
dictionary has the following keys:
- ``bodies``: A list of the `~.collections.PolyCollection`
instances containing the filled area of each violin.
- ``cmeans``: A `~.collections.LineCollection` instance that marks
the mean values of each of the violin's distribution.
- ``cmins``: A `~.collections.LineCollection` instance that marks
the bottom of each violin's distribution.
- ``cmaxes``: A `~.collections.LineCollection` instance that marks
the top of each violin's distribution.
- ``cbars``: A `~.collections.LineCollection` instance that marks
the centers of each violin's distribution.
- ``cmedians``: A `~.collections.LineCollection` instance that
marks the median values of each of the violin's distribution.
- ``cquantiles``: A `~.collections.LineCollection` instance created
to identify the quantiles values of each of the violin's
distribution.
"""
# Statistical quantities to be plotted on the violins
means = []
mins = []
maxes = []
medians = []
quantiles = np.asarray([])
# Collections to be returned
artists = {}
N = len(vpstats)
datashape_message = ("List of violinplot statistics and `{0}` "
"values must have the same length")
# Validate positions
if positions is None:
positions = range(1, N + 1)
elif len(positions) != N:
raise ValueError(datashape_message.format("positions"))
# Validate widths
if np.isscalar(widths):
widths = [widths] * N
elif len(widths) != N:
raise ValueError(datashape_message.format("widths"))
# Calculate ranges for statistics lines
pmins = -0.25 * np.array(widths) + positions
pmaxes = 0.25 * np.array(widths) + positions
# Check whether we are rendering vertically or horizontally
if vert:
fill = self.fill_betweenx
perp_lines = self.hlines
par_lines = self.vlines
else:
fill = self.fill_between
perp_lines = self.vlines
par_lines = self.hlines
if rcParams['_internal.classic_mode']:
fillcolor = 'y'
edgecolor = 'r'
else:
fillcolor = edgecolor = self._get_lines.get_next_color()
# Render violins
bodies = []
for stats, pos, width in zip(vpstats, positions, widths):
# The 0.5 factor reflects the fact that we plot from v-p to
# v+p
vals = np.array(stats['vals'])
vals = 0.5 * width * vals / vals.max()
bodies += [fill(stats['coords'],
-vals + pos,
vals + pos,
facecolor=fillcolor,
alpha=0.3)]
means.append(stats['mean'])
mins.append(stats['min'])
maxes.append(stats['max'])
medians.append(stats['median'])
q = stats.get('quantiles')
if q is not None:
# If exist key quantiles, assume it's a list of floats
quantiles = np.concatenate((quantiles, q))
artists['bodies'] = bodies
# Render means
if showmeans:
artists['cmeans'] = perp_lines(means, pmins, pmaxes,
colors=edgecolor)
# Render extrema
if showextrema:
artists['cmaxes'] = perp_lines(maxes, pmins, pmaxes,
colors=edgecolor)
artists['cmins'] = perp_lines(mins, pmins, pmaxes,
colors=edgecolor)
artists['cbars'] = par_lines(positions, mins, maxes,
colors=edgecolor)
# Render medians
if showmedians:
artists['cmedians'] = perp_lines(medians,
pmins,
pmaxes,
colors=edgecolor)
# Render quantile values
if quantiles.size > 0:
# Recalculate ranges for statistics lines for quantiles.
# ppmins are the left end of quantiles lines
ppmins = np.asarray([])
# pmaxes are the right end of quantiles lines
ppmaxs = np.asarray([])
for stats, cmin, cmax in zip(vpstats, pmins, pmaxes):
q = stats.get('quantiles')
if q is not None:
ppmins = np.concatenate((ppmins, [cmin] * np.size(q)))
ppmaxs = np.concatenate((ppmaxs, [cmax] * np.size(q)))
# Start rendering
artists['cquantiles'] = perp_lines(quantiles, ppmins, ppmaxs,
colors=edgecolor)
return artists
# Methods that are entirely implemented in other modules.
table = mtable.table
# args can by either Y or y1, y2, ... and all should be replaced
stackplot = _preprocess_data()(mstack.stackplot)
streamplot = _preprocess_data(
replace_names=["x", "y", "u", "v", "start_points"])(mstream.streamplot)
tricontour = mtri.tricontour
tricontourf = mtri.tricontourf
tripcolor = mtri.tripcolor
triplot = mtri.triplot